A part affordance–based approach for detailed design process planning in collaborative environment

2014 ◽  
Vol 22 (4) ◽  
pp. 291-308
Author(s):  
Jian Huang ◽  
Yong Chen ◽  
Zhinan Zhang ◽  
Youbai Xie
Author(s):  
Shaw C. Feng ◽  
William Z. Bernstein ◽  
Thomas Hedberg ◽  
Allison Barnard Feeney

The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing (SM). Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of SM. The case study in this paper provides some example knowledge objects to enable SM.


Author(s):  
Maxime Moret ◽  
Alexandre Delecourt ◽  
Hany Moustapha ◽  
Francois Garnier ◽  
Acher-Igal Abenhaim

The use of Multidisciplinary Design Optimization (MDO) techniques at the preliminary design phase (PMDO) of a gas turbine engine allows investing more effort at the pre-detailed phase in order to prevent the selection of an unsatisfactory concept early in the design process. Considering the impact of the turbine tip clearance on an engine’s efficiency, an accurate tool to predict the tip gap is a mandatory step towards the implementation of a full PMDO system for the turbine design. Tip clearance calculation is a good candidate for PMDO technique implementation considering that it implies various analyses conducted on both the rotor and stator. As a first step to the development of such tip clearance calculator satisfying PMDO principles, the present work explores the automation feasibility of the whole analysis phase of a turbine rotor preliminary design process and the potential increase in the accuracy of results and time gains. The proposed conceptual system integrates a thermal boundary conditions automated calculator and interacts with a simplified air system generator and with several conception tools based on parameterized CAD models. Great improvements were found when comparing this work’s analysis results with regular pre-detailed level tools, as they revealed to be close to the one generated by the detailed design tools used as target. Moreover, this design process revealed to be faster than a common preliminary design phase while leading to a reduction of time spent at the detailed design phase. By requiring fewer user inputs, this system decreases the risk of human errors while entirely leaving the important decisions to the designer.


2004 ◽  
Vol 2004.14 (0) ◽  
pp. 359-362
Author(s):  
Yutaka NOMAGUCHI ◽  
Atsushi INOUE ◽  
Kikuo FUJITA

2016 ◽  
Vol 65 (1) ◽  
pp. 117-132 ◽  
Author(s):  
Chen Xiao-Qiang ◽  
Hao Chun-Ling ◽  
Qiu Hao ◽  
Li Min

AbstractIn this paper, a low kilo-volt-ampere rating zigzag connected autotransformer based 36-pulse rectifier system supplying vector controlled induction motor drives (VCIMD) is designed, modeled and simulated. Detailed design procedure and magnetic rating calculation of the proposed autotransformer and interphase reactor is studied. Moreover, the design process of the autotransformer is modified to make it suitable for retrofit applications. Simulation results confirm that the proposed 36-pulse rectifier system is able to suppress less than 35thharmonics in the utility line current. The influence of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 36-pulse rectifiers. A set of power quality indices at AC mains and DC link are presented to compare the performance of 6-, 24- and 36-pulse AC-DC converters.


2008 ◽  
Vol 44-46 ◽  
pp. 215-224
Author(s):  
Yu Dong Yang ◽  
Zhi Hua Li ◽  
Shu Ting Zhang

According to the characteristics of the design process of top-down collaborative assembly design, process planning dynamic model based on HOOPN (hierarchical object-oriented Petri-net) is constructed for top-down collaborative assembly design. The outside and inside task dependent relationships among the task groups include parallel, sequence and coupling are implemented. The definitions of attribute for each element and the activation rules are presented for Petri-net. The fuzzy overall evaluation model is applied for risk evaluation of design process, and the local and global risk level is determined. The whole process planning is adjusted and controlled based on special risk decision-making mechanism.


2017 ◽  
Vol 23 (1) ◽  
pp. 137-148 ◽  
Author(s):  
Shaw C. Feng ◽  
Paul Witherell ◽  
Gaurav Ameta ◽  
Duck Bong Kim

Purpose Additive manufacturing (AM) processes are the integration of many different science and engineering-related disciplines, such as material metrology, design, process planning, in-situ and off-line measurements and controls. Major integration challenges arise because of the increasing complexity of AM systems and a lack of support among vendors for interoperability. The result is that data cannot be readily shared among the components of that system. In an attempt to better homogenization this data, this paper aims to provide a reference model for data sharing of the activities to be under-taken in the AM process, laser-based powder bed fusion (PBF). Design/methodology/approach The activity model identifies requirements for developing a process data model. The authors’ approach begins by formally decomposing the PBF processes using an activity-modeling methodology. The resulting activity model is a means to structure process-related PBF data and align that data with specific PBF sub-processes. Findings This model in this paper provides the means to understand the organization of process activities and sub-activities and the flows among them in AM PBF processes. Research limitations/implications The model is for modeling AM activities and data associated with these activity. Data modeling is not included in this work. Social implications After modeling the selected PBF process and its sub-processes as activities, the authors discuss requirements for developing the development of more advanced process data models. Such models will provide a common terminology and new process knowledge that improve data management from various stages in AM. Originality/value Fundamental challenges in sharing/reusing data among heterogeneous systems include the lack of common data structures, vocabulary management systems and data interoperability methods. In this paper, the authors investigate these challenges specifically as they relate to process information for PBF – how it is captured, represented, stored and accessed. To do this, they focus on using methodical, information-modeling techniques in the context of design, process planning, fabrication, inspection and quality control.


Sign in / Sign up

Export Citation Format

Share Document