Targeted Therapy for Hematologic Malignancies

2005 ◽  
Vol 12 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Philip Kuriakose

Background: The introduction of monoclonal antibodies, either as native molecules or conjugated to radioisotopes or other toxins, has led to new therapeutic options for patients with hematologic malignancies. In addition, the use of small molecules against specific cell surface receptors, enzymes, and proteins has become an important strategy in the treatment of such disorders. Methods: The author reviewed the published clinical trials of monoclonal antibody and other targeted therapies in hematologic malignancies. Results: Results from several trials demonstrate a therapeutic benefit for the use of monoclonal antibodies (either native or conjugated) and other targeted therapies, used alone or in combination with standard cytotoxic chemotherapy. Conclusions: Targeted therapy of hematologic malignancies seems to be an effective and less toxic approach to the treatment of such disorders. Nevertheless, additional studies are needed to determine where and when such management fits into a therapeutic regimen for any given disorder, whether upfront or as salvage therapy, alone or in combination with chemotherapy (concurrent or sequential).

1984 ◽  
Vol 33 (2) ◽  
pp. 268-281 ◽  
Author(s):  
Ann M. Carroll ◽  
Michael Zalutsky ◽  
Sam Schatten ◽  
Atul Bhan ◽  
Linda L. Perry ◽  
...  

2002 ◽  
Vol 4 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Josephine Clare Adams

The adhesion of cells to their surrounding extracellular matrix has vital roles in embryonic development, inflammatory responses, wound healing and adult tissue homeostasis. Cells attach to extracellular matrix by specific cell-surface receptors, of which the integrins and transmembrane proteoglycans are major representatives. The engagement of adhesion receptors triggers assembly of functional matrix contacts, in which bound matrix components, adhesion receptors and associated intracellular cytoskeletal and signalling molecules form large, localised multiprotein complexes. This review discusses the functional categories of matrix contacts, examples of the biological roles of matrix contacts in normal physiology, and examples of the ways in which abnormalities of matrix contacts are associated with major human diseases.


1982 ◽  
Vol 156 (4) ◽  
pp. 1000-1009 ◽  
Author(s):  
D I Beller ◽  
T A Springer ◽  
R D Schreiber

Anti-Mac-1 (M1/70), a rat monoclonal antibody that reacts with mouse and human macrophages, polymorphonuclear leukocytes (PMNL), and natural killer cells, selectively inhibited complement receptor-mediated rosetting by murine macrophages and human PMNL. Preincubation of macrophages with anti-Mac-1 inhibited formation of rosettes with sheep erythrocytes bearing IgM antibody and murine C3 fragments. No inhibition was observed when other monoclonal antibodies that react with macrophages (such as anti-Ly5, anti-H-2, or anti-pan-leukocyte) were tested at 10-fold higher concentrations. Anti-Mac-1 did not affect macrophage Fc receptor-mediated rosetting. Erythrocytes bearing homogeneous human C3 fragments C3b (EC3b) or C3bi (EC3bi) were used to test the specificity of the murine macrophage and human PMNL complement receptor inhibited by anti-Mac-1. In both cases, anti-Mac-1 inhibited CR3-mediated rosetting of EC3bi but not CR1-dependent rosetting of EC3b. The results show that Mac-1 is either identical to CR3 or closely associated with CR3 function. This is one of the first cases in which a monoclonal antibody-defined differentiation antigen has been associated with a specific cell surface function.


1987 ◽  
Vol 122 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Shin Takagi ◽  
Toshiaki Tsuji ◽  
Takashi Amagai ◽  
Tetsuro Takamatsu ◽  
Hajime Fujisawa

2021 ◽  
Vol 12 ◽  
Author(s):  
Mengda Xu ◽  
Jiangping Song

Targeted therapy refers to exploiting the specific therapeutic drugs against the pathogenic molecules (a protein or a gene) or cells. The drug specifically binds to disease-causing molecules or cells without affecting normal tissue, thus enabling personalized and precision treatment. Initially, therapeutic drugs included antibodies and small molecules, (e.g. nucleic acid drugs). With the advancement of the biology technology and immunotherapy, the gene editing and cell editing techniques are utilized for the disease treatment. Currently, targeted therapies applied to treat cardiovascular diseases (CVDs) mainly include protein drugs, gene editing technologies, nucleic acid drugs and cell therapy. Although targeted therapy has demonstrated excellent efficacy in pre-clinical and clinical trials, several limitations need to be recognized and overcome in clinical application, (e.g. off-target events, gene mutations, etc.). This review introduces the mechanisms of different targeted therapies, and mainly describes the targeted therapy applied in the CVDs. Furthermore, we made comparative analysis to clarify the advantages and disadvantages of different targeted therapies. This overview is expected to provide a new concept to the treatment of the CVDs.


1983 ◽  
Vol 71 (5) ◽  
pp. 1431-1441 ◽  
Author(s):  
F Krempler ◽  
G M Kostner ◽  
A Roscher ◽  
F Haslauer ◽  
K Bolzano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document