On Fuzzy Control of Chaotic Systems

2004 ◽  
Vol 10 (7) ◽  
pp. 979-993 ◽  
Author(s):  
Ahmad M. Harb ◽  
Issam A. Smadi

In this paper, we introduce the control of the strange attractor, chaos. Because of the importance of controlling undesirable behavior in systems. researchers are investigating the use of linear and nonlinear controllers, either to remove such oscillations (in power systems) or to match two chaotic systems (in secure communications). The idea of using the fuzzy logic concept for controlling chaotic behavior is presented. There are two good reasons for using fulzy control: first, there is no mathematical model available for the process; secondly. it can satisfy nonlinear control that can be developed empirically. without complicated mathematics. The two systems are well-known models so the first reason is not a big problem. and we can take advantage of the second reason.

2013 ◽  
Vol 196 ◽  
pp. 140-147 ◽  
Author(s):  
Józef Małecki

In this paper we design the fuzzy logic autopilot to precise control and a track-keeping control of the ship. Precise control of ship has known an increasing interest in the last years. The main benefits of usage of autopilot for control of ship can be removing a man from the dangers of the undersea environment and reduction in cost of exploration of deep seas. Currently, it is common to use the special ship to accomplish missions as the inspection of coastal and off-shore structures, cable maintenance, as well as hydrographical surveys. In the military field they are employed in such tasks as surveillance, intelligence gathering, torpedo recovery and mine counter measures. Hence, a problem of its ability to move along a reference path and keep a desired orientation is regarded. A non-linear mathematical model describes the vehicle’s dynamics. Command signals are generated by an autopilot with fuzzy control law implemented. Some results of computer simulations are provided to demonstrate effectiveness, correctness and usefulness of the approach.


2020 ◽  
Vol 9 (5) ◽  
pp. 1861-1872
Author(s):  
M. Madark ◽  
A. Ba-razzouk ◽  
M. El Malah

This paper provided a comparative study between linear and nonlinear controllers of a solar photovoltaic (PV) water pumping system using an induction motor and a centrifugal pump. For linear controller, classical Perturb and Observe was selected to ensure the operation of the PV system at the maximum power point (MPP) and is combined with Indirect Rotor Field Oriented Control (IRFOC) based on a conventional proportional integral speed regulator chosen to control and to optimize the rotor speed. In second and third controllers, Backstepping and first order sliding mode controls were proposed for controlling the whole system. To regulate and optimize rotor speed in the nonlinear controller, all considered control techniques were combined with IRFOC in order to establish easy control laws. In addition, MPP was tracked by acting on the DC-DC converter and using its mathematical model for developing control laws. Maximum delivered power was used as reference signal for optimizing actual rotor speed. The controlled system is operated without mechanical sensors. Estimators of rotor speed and load torque were proposed based on the mathematical model of induction motor and centrifugal pump and using only available output measurements.. Simulation results were investigated and the effectiveness of the nonlinear proposed strategies.


2014 ◽  
Vol 960-961 ◽  
pp. 960-963
Author(s):  
Lin Sun ◽  
Wei Cai ◽  
Tian Ran Li ◽  
Hua Ren Wu

A method is proposed to design a wide-area damping controller (WADC) based on fuzzy control to dampen the low-frequency oscillations of interconnected power systems. First, the inputs and expected outputs of a fuzzy logic controller are analyzed. Then, a universe of fuzzy sets, membership functions and fuzzy rules are determined based on the relationship between inputs and outputs, and the fuzzy logic controller is constituted. The WADC consists of a fuzzy logic controller and a gain. The gain is obtained using particle swarm optimization. A four-machine two-area power system is simulated using the Matlab/Simulink software to test the performance of the fuzzy-based WADC. The simulation results indicate that the designed controller can compensate for communication delay and improve interconnected power system damping.


2012 ◽  
Vol 19 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Abdelkrim Boukabou ◽  
Noura Mansouri

We present in this paper a novel and unified control approach that combines intelligent fuzzy logic methodology with predictive method for controlling chaotic vibration of a class of uncertain chaotic systems. We first introduce prediction into each subsystem of Takagi Sugeno (T-S) fuzzy IF-THEN rules and then present a unified T-S predictive fuzzy model for chaos control. The proposed controller can successfully stabilize the chaos and track the desired targets. The simulation results illustrate its effectiveness.


2021 ◽  
pp. 2213-2221
Author(s):  
Raied K. Jamal ◽  
Falah H. Ali ◽  
Falah A-H. Mutlak

     In this paper, two different chaotic dynamic systems are coupled using a semiconductor laser to produce a new chaotic system. These two chaotic systems are Rossler and Chua systems. X-dynamic of Rossler system was coupled optically using optical fiber as a carrier of signal with x, y, and z-dynamics of Chua system. The results were analyzed and the behavior of Chua system was found to be changing in time series which, in turn, changed the attractor. The Chua attractor was converted from double scroll to single scroll. The results obtained from connecting two different systems in chaotic behavior showed a remarkable increase in the bandwidth of Chua system. This increase in bandwidth opens up a wide field for many applications, the most important of which is in the field of secure communications.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1146 ◽  
Author(s):  
Yincheng Li ◽  
Wenbin Zhang ◽  
Peng Li ◽  
Youhuan Ning ◽  
Chunguang Suo

At present, the method of using unmanned aerial vehicles (UAVs) with traditional navigation equipment for inspection of overhead transmission lines has the limitations of expensive sensors, difficult data processing, and vulnerable to weather and environmental factors, which cannot ensure the safety of UAV and power systems. Therefore, this paper establishes a mathematical model of spatial distribution of transmission lines to study the field strength distribution information around transmission lines. Based on this, research the navigation and positioning algorithm. The data collected by the positioning system are input into the mathematical model to complete the identification, positioning, and safety distance diagnosis of the field source. The detected data and processing results can provide reference for UAV obstacle avoidance navigation and safety warning. The experimental results show that the positioning effect of the positioning navigation algorithm is obvious, and the positioning error is within the range of use error and has good usability and application value.


2015 ◽  
Vol 1116 ◽  
pp. 94-129 ◽  
Author(s):  
Maimoon Atif ◽  
Fahad A. Al-Sulaiman

This chapter starts with a background about concentrating solar power systems and thermal energy storage systems and then a detailed literature review about concentrated solar power systems and supercritical Brayton carbon dioxide cycles. Next, a mathematical model was developed and presented which generates and optimizes a heliostat field effectively. This model was developed to demonstrate the optimization of a heliostat field using differential evolution, which is an evolutionary algorithm. The current model illustrates how to employ the developed model and its advantages. The optimization process calculates the optical performance parameters at every step of the optimization considering all the heliostats; thus yields accurate results as discussed in this chapter. On the other hand, complete mathematical model of supercritical CO2Brayton cycles when integrated with solar thermal power tower system was presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document