Nonlinear transient response of rough symmetric two lobe hole entry hybrid journal bearing system

2016 ◽  
Vol 23 (2) ◽  
pp. 190-219 ◽  
Author(s):  
Satish C Sharma ◽  
Prashant B Kushare

The present paper describes the effect of surface roughness orientation pattern on the nonlinear transient response of symmetric two lobe capillary compensated hole entry hybrid journal bearing. Nonlinear equations of motion have been solved with the Runge-Kutta method. The stability of the journal bearing system has been studied by obtaining the journal center motion trajectories. The results of the study reveal that the surface roughness pattern significantly changes the stability of capillary compensated two lobe hole entry hybrid journal bearing. Hence, from the bearing stability point of view, a proper selection of the surface roughness pattern and bearing geometry is essential.

Author(s):  
Kamal Budheeja ◽  
Suresh Verma

The present work deals with study and analysis of a symmetric hybrid journal bearing compensated with constant flow valve restrictor operating with micropolar fluid from stability point of view. The effect of micropolar parameters on the stability of this journal bearing system is presented on the basis of nonlinear transient model. Finite element method has been used to solve modified Reynolds’ equation for the flow of micropolar fluid through the bearing. Computations are done for the static and dynamic characteristics of hole-entry hybrid journal bearing system. The stability characteristics in terms of critical mass of journal, threshold speed, and frequency of whirl are obtained for journal bearing system operating with Newtonian and micropolar fluids and are compared together. Paths of the journal center in the form of trajectories have also been plotted using the journal center coordinates obtained after solving nonlinear equation of motion by fourth-order Runge–Kutta method to find the stability margin of the considered bearing configuration more precisely and easily. Results indicate that micropolar effect causes significant increase in stability margin of the hybrid journal bearing system especially at higher loads. The results also indicate that lubricant flow through the bearing and type of lubricant should be decided in an appropriate manner for the stability of the constant flow valve compensated hybrid journal bearing system.


Author(s):  
Dharmendra Jain ◽  
Satish C Sharma

The present study is concerned with the linear and nonlinear transient motion analysis of a 2-lobe geometrically imperfect hybrid journal bearing system compensated with constant flow valve restrictor. The trajectories of journal center motion for a geometrically imperfect rotating journal (barrel, bellmouth and undulation type journal) have been numerically simulated by solving the linear and nonlinear equations of motion of journal center using a fourth order Runga–Kutta method. The numerically computed results for the journal center trajectories indicate that the 2-lobe bearing [Formula: see text] is more stable with geometrically imperfect journal as compared to the circular bearing with imperfect journal.


Author(s):  
S. Chandraker ◽  
J. K. Dutt ◽  
H. Roy

In the last few decades, intensive research has been carried out on viscoelastic materials. Among them, most importantly polymers and composites thereof find extensive applications in engineering structures and rotors primarily due to quite high strength to weight ratio in comparison with metals. In dynamic modeling of rotor bearing system, incorporation of damping is very important as stationary (external) damping always helps in stability, however rotary damping (internal) promotes instability of rotors above a certain speed. Therefore for modeling point of view, it is very important to consider both internal or external damping effect. For this reason, the dissipation mechanism has been handled in such a way that it provides proper forces irrespective of its presence in a stationary or a rotary frame. Also in present work, both classical method and operator multiplier method are suggested to derive the equations of motion. The analysis also shows the stability zones of the rotor bearing system for various parametric values of different viscoelastic supports. It is found that choosing a right viscoelastic support can increase the stability criteria of the system to some extent.


1976 ◽  
Vol 98 (4) ◽  
pp. 620-628 ◽  
Author(s):  
D. V. Singh ◽  
R. Sinhasan ◽  
S. P. Tayal

By discretizing time and numerically integrating the equations of motion either for the linearized or the nonlinear journal bearing system, the locus of journal center can be predicted in the wake of a disturbance which upsets the equilibrium. From this locus, not only the stability of the system can be readily checked but also a greater insight into the dynamic characteristics of the rotor bearing systems can be obtained. Systems of solid bearings and porous bearings with journal bearing axes parallel as well as skewed have been studied.


2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


2003 ◽  
Vol 125 (2) ◽  
pp. 291-300 ◽  
Author(s):  
G. H. Jang ◽  
J. W. Yoon

This paper presents an analytical method to investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill’s infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.


2015 ◽  
Vol 67 (5) ◽  
pp. 1024-1045
Author(s):  
Samia Ashraf ◽  
Haniya Azam ◽  
Barbu Berceanu

AbstractThe symmetric group 𝓢n acts on the power set 𝓟(n) and also on the set of square free polynomials in n variables. These two related representations are analyzed from the stability point of view. An application is given for the action of the symmetric group on the cohomology of the pure braid group.


Sign in / Sign up

Export Citation Format

Share Document