A shuffled frog-leaping algorithm based mixed-sensitivity H∞ control of a seismically excited structural building using MR dampers

2017 ◽  
Vol 24 (13) ◽  
pp. 2832-2852 ◽  
Author(s):  
Xiufang Lin ◽  
Shumei Chen ◽  
Guorong Huang

An intelligent robust controller, which combines a shuffled frog-leaping algorithm (SFLA) and an H∞ control strategy, is designed for a semi-active control system with magnetorheological (MR) dampers to reduce seismic responses of structures. Generally, the performance of mixed-sensitivity H∞ (MSH) control highly depends on expert experience in selecting the parameters of the weighting functions. In this study, as a recently-developed heuristic approach, a multi-objective SFLA with constraints is adopted to search for the optimal weighting functions. In the proposed semi-active control, firstly, based on the Bouc–Wen model, the forward dynamic characteristics of the MR damper are investigated through a series of tensile and compression experiments. Secondly, the MR damper inverse model is developed with an adaptive-network-based fuzzy inference system (ANFIS) technique. Finally, the SFLA-optimized MSH control approach integrated with the ANFIS inverse model is used to suppress the structural vibration. The simulation results for a three-story building model equipped with an MR damper verify that the proposed semi-active control method outperforms fuzzy control and two passive control methods. Besides, with the proposed strategy, the changes in structural parameters and earthquake excitations can be satisfactorily dealt with.

2010 ◽  
Vol 29-32 ◽  
pp. 343-348 ◽  
Author(s):  
Hao Wang ◽  
Xiao Mei Shi

Magneto-rheological (MR) dampers, recently, have been widely utilized in many different areas of engineering for their high properties. There are two different kinds of problems for MR dampers, the direct model and the inverse one. It is difficult to express of the direct model of the MR damper for its high nonlinearity and hysteretic characteristics. It is much more difficult to get the inverse model of MR damper, which means the determination of the input voltage so as to gain the desired restoring force decided by the control law. When identifying the direct and the inverse model of MR damper with Adaptive Neuro-Fuzzy Inference System (ANFIS), there exists curse of dimensionality of fuzzy system. Therefore, it will take much more time, and even the inverse model may not be identifiable. The paper presents a hierarchical ANFIS to deal with the curse of dimensionality of the fuzzy identification of MR damper and to identify the direct and the inverse model of MR damper. The numerical simulation proves that the proposed hierarchical ANFIS can model the direct and the inverse model of MR damper much more quickly than ANFIS without more changing of identification precision. Such hierarchical ANFIS shows the higher priority for the complicated system, and can also be used in system identification and system control for the complicated system.


2021 ◽  
Vol 11 (1) ◽  
pp. 49-52
Author(s):  
K. Sumanth Ratna ◽  
C. Daniel ◽  
Anshika Ram ◽  
B. Siva Kumar Yadav ◽  
G. Hemalatha

Abstract In this paper, a vibration control system with magnetorheological (MR) damper investigation is reviewed. At first a MR damper is investigated analytically using various finite element method software and the performance is investigated using experimental. The MR Dampers are designed and modelled for a scaled down setup. The application is in seismic resistance of buildings, automobile, physical and biological. Finally, the damper is investigated using various technique and methods used to study the performance is reviewed. This device reduces the vibration in both active and semi active control system effectively.


Author(s):  
Eunchurn Park ◽  
Sung-Kyung Lee ◽  
Heon-Jae Lee ◽  
Seok-Joon Moon ◽  
Hyung-Jo Jung ◽  
...  

This study introduces the quantitative evaluation of the seismic performance of a building structure equipped with MR dampers by using real-time hybrid testing method (RT-HYTEM). A real-scaled 5-story building is used as the numerical substructure, and MR dampers corresponding to an experimental substructure is physically tested by using UTM. First, the force required to drive the displacement of the story, at which the MR damper is located, is measured from the load cell attached to UTM. Then, the measured force is returned to a control computer to calculate the response of the numerical substructure. Finally, the experimental substructure is excited by UTM with the calculated response of the numerical substructure. The RT-HYTEM implemented in this study is validated for that the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Furthermore, semi-active control algorithms were applied to the MR damper. The comparison results of experimental and numerical responses demonstrated that using RT-HYTEM was more reasonable in semi-active devices such as MR dampers having strong nonlinearity.


Author(s):  
DR Parhi ◽  
S Kundu

In this research article, a novel navigational approach has been introduced for underwater robot based on learning and self-adaptation ability of adaptive neuro-fuzzy inference system. For avoiding obstacles during three-dimensional navigation, two adaptive neuro-fuzzy inference system models have been coupled to find out required change in heading angles of underwater robot in horizontal and vertical planes, respectively. A new hybrid learning scheme has been proposed for adaptive neuro-fuzzy inference system. Here, memetic approach based shuffled frog leaping algorithm has been used to tune the premise parameters and consequent parameters has been estimated through recursive least square estimation. Minimization of error in output of adaptive neuro-fuzzy inference system model has been treated as major objective of evolutionary-based training algorithm. Preliminary robotic behaviors of underwater robot have been successfully executed by implementing such well-trained adaptive neuro-fuzzy inference system architecture within three-dimensional unspecified workspace. Navigational performance of adaptive neuro-fuzzy inference system trained with the proposed hybrid learning algorithm has been compared with other three-dimensional navigational approaches in simulation mode for authentication purpose. Experimental verification has also been carried out to validate the feasibility and efficiency of the proposed navigational strategy.


2020 ◽  
Vol 65 (10) ◽  
pp. 1738-1751 ◽  
Author(s):  
Babak Mohammadi ◽  
Nguyen Thi Thuy Linh ◽  
Quoc Bao Pham ◽  
Ali Najah Ahmed ◽  
Jana Vojteková ◽  
...  

2017 ◽  
Vol 24 (15) ◽  
pp. 3434-3453 ◽  
Author(s):  
MJL Boada ◽  
BL Boada ◽  
V Diaz

Semi-active suspensions based on magnetorheological (MR) dampers are receiving significant attention, especially for control of vibration isolation systems. The nonlinear hysteretic behavior of MR dampers can cause serious problems in controlled systems, such as instability and loss of robustness. Most of the developed controllers determine the desired damping forces which should be produced by the MR damper. Nevertheless, the MR damper behavior can only be controlled in terms of the applied current (or voltage). In addition to this, it is necessary to develop an adequate inverse dynamic model in order to calculate the command current (or voltage) for the MR damper to generate the desired forces as close as possible to the optimal ones. Due to MR dampers being highly nonlinear devices, the inverse dynamics model is difficult to obtain. In this paper, a novel inverse MR damper model based on a network inversion is presented to estimate the necessary current (or voltage) such that the desired force is exerted by the MR damper. The proposed inverse model is validated by carrying out experimental tests. In addition, a comparison of simulated tests with other damper controllers is also presented. Results show the effectiveness of the network inversion for inverse modeling of an MR damper. Thus, the proposed inverse model can act as a damper controller to generate the command current (or voltage) to track the desired damping force.


2017 ◽  
Vol 24 (13) ◽  
pp. 2938-2953 ◽  
Author(s):  
Akbar Bathaei ◽  
Seyed Mehdi Zahrai ◽  
Meysam Ramezani

Nowadays, vibration control of structures is considered as a challenging field among scientists and engineers. Structural damage and financial losses due to recent earthquakes in different countries have more than ever before accentuated the importance of controlling earthquake-induced vibrations. In recent years, semi-active control has been introduced as an efficient and reliable type of structural control which provides the reliability of passive control and flexibility of active control systems at the same time. In this study, the performance of a semi-active tuned mass damper (TMD) with adaptive magnetorheological (MR) damper is investigated using type-1 and -2 fuzzy controllers for seismic vibration mitigation of an 11-degree of freedom building model. The TMD is installed on the roof and the MR damper is located on the 11th story. The MR damper has a capacity of producing a 1000 kN control force. The fuzzy system is designed based on the acceleration and velocity of the top floor determining the input voltage needed to produce the control force based on accelerating or decelerating movements of structure. The seismic performance of semi-active type-2 controller, which considers the uncertainties related to input variables, is higher than that of the type-1 fuzzy controller. The type-2 fuzzy controller is capable of reducing further the maximum displacement, acceleration, and base shear of the structure by 11.7, 14, and 11.2%, respectively, compared to the type-1 fuzzy controller.


Author(s):  
Ali Bagherkhani ◽  
Abdolhossein Baghlani

The catastrophic damages of past earthquakes show that irregular structures are more vulnerable to seismic excitation. On the other hand, dynamic responses depend on the severity of irregularity which is hard to be determined precisely. In this study, performance and reliability of magnetorheological (MR) fluid dampers in controlling torsional-lateral responses of irregular structures are evaluated. In this regard, plan-asymmetry is studied by considering mass eccentricity; whereas vertical-irregularity is investigated by creating mass difference in adjacent stories of the structure. The performance of MR dampers in seismic control of the structure is then evaluated for passive and semi-active control scenarios. The reliability of the structure-MR damper system is then studied by considering uncertainties in severity of irregularities using the Monte Carlo simulation method. Six types of limit state function are defined and the reliability of the system for controlling the desired responses are derived. The results show satisfactory performance of MR dampers in controlling coupled torsional-lateral responses of the structure in which semi-active control system outperforms the passive control system. The results also confirm that the performance of the control system highly depends on the structure irregularity which should be taken into account for design of a safe and reliable structure.


2009 ◽  
Vol 09 (04) ◽  
pp. 661-685 ◽  
Author(s):  
BO CHEN ◽  
JIN ZHENG ◽  
WEILIAN QU

Transmission tower-line system is a high-rise structure with low damping and it is therefore prone to strong wind excitation. In this paper, the control of wind-induced response of transmission tower-line system is carried out by using magnetorheological (MR) dampers. The effects of brace stiffness of damper are introduced and a multi-degree-of-freedom (MDOF) model is developed for both in-plane/out-of-plane vibration of transmission tower-line system. Two semi-active control strategies are proposed for the vibration mitigation of tower-line system. The first one is based on fixed increment of controllable damper force whereas the second one is a clipped-optimal strategy based on fuzzy control principle. The optimal parameters of the MDOF model of transmission line are investigated. A real transmission tower-line system constructed in China is taken as an example to examine the feasibility and reliability of the proposed approach. A parametric study is conducted for the effects of brace stiffness of MR damper, wind loading intensity, and parameters of MR fluids on the control performance. The results demonstrate that the incorporation of MR dampers into the transmission tower-line system can substantially suppress the wind-induced responses of transmission tower if the damper parameters are optimally determined. The performance of the two kinds of semi-active control approaches is better than that of a passive control approach.


Sign in / Sign up

Export Citation Format

Share Document