Prediction of the normal contact stiffness between elastic rough surfaces in lubricated contact via an equivalent thin layer

2020 ◽  
Vol 26 (21-22) ◽  
pp. 2060-2069
Author(s):  
Yunyun Sun ◽  
Ho-Chiao Chuang ◽  
Huifang Xiao ◽  
Jinwu Xu

In this work, the normal contact stiffness of lubricated rough interface is evaluated theoretically by describing the lubricated rough interface as an equivalent thin layer. Layer parameters, including equivalent thickness and effective Young’s modulus, are used to characterize the normal contact stiffness by incorporating the contributions of asperity contact and lubricant contact simultaneously. On the basis of layer parameters, the normal contact stiffness of lubricated rough interface is obtained as a function of interfacial separation, surface topography, and properties of contacting solids and lubricants. Effects of surface topographies and lubricant types on the normal contact stiffness are investigated at varying interfacial separations and contact area fractions. The proportion of solid stiffness and lubricant stiffness from the total normal stiffness is also discussed. Numerical solutions reveal that the normal contact stiffness depends sensitively on the lubricant property at initial contact, whereas the influences of surface topographies become obvious with the decrement of interfacial separation or increment of contact area fraction. Comparisons between the predicted values of normal contact stiffness and experimental data for both dry interface and lubricated interface are presented to validate the rationality of the developed model.

Author(s):  
Yunyun Sun ◽  
Huifang Xiao ◽  
Jinwu Xu

In this paper, a method for evaluating the contact stiffness ratio of the elastic rough interface is proposed. The rough contact interface subjected to normal load is replaced by an equivalent thin layer with isotropic material. The interfacial stiffness ratio is characterized using the material parameters of the thin layer. The shear modulus and Young’s modulus of the thin layer are determined by introducing the stuck length coefficient combined with the micro-contact analysis of the deformed asperity. The derived stiffness ratio is related to the surface topography, interfacial separation, material properties of the contacting bodies, and the stuck length coefficient. The implicit solution of the stuck length coefficient is also obtained. Variations of the stiffness ratio with the interfacial separation and the normal force are analyzed for different surface topographies and stuck length coefficients. Comparisons between the interfacial stiffness ratio of the proposed method and the experimental results as well as the calculated values of existing models are performed.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882447 ◽  
Author(s):  
Kai Zhang ◽  
Guoxi Li ◽  
Jing Zhong Gong ◽  
Meng Zhang

The contact stiffness of the machined surface has an important effect on the performance of the complex mechanical product. A modified fractal model based on oblique asperity contact is proposed in this research. First, the contact radius and the critical contact area are analyzed based on oblique contact condition. The normal contact stiffness and elastic–plastic force are calculated. The ratio of the actual contact area and a new parameter related to the current contact angle are introduced. Second, numerical simulations indicate the difference. The results show that the stiffness of the oblique contact is smaller, and with the increment of the fractal dimension, the extent of the stiffness reduction is larger. In contrast, the uniform distribution has the lower proportion of the elastic force in the total normal contact force. Finally, experiments including specimen surface observation and load-deformation measurement are utilized to obtain contact stiffness of the machined surface. To some extent, the modified fractal stiffness model is more reasonable and accurate from the result.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
J. P. Shi ◽  
K. Ma ◽  
Z. Q. Liu

Based on the Greenwood and Williamson theory, an assumption about the contact-area size of asperities on rough surfaces is proposed under the premise that the height of these asperities on rough surfaces is a Gaussian distribution. A formula has been derived to measure the number of asperities on 2D surfaces. The contact stiffness on a unit length of a 1D outline and that on a unit area of 2D surfaces are presented based on a formula for determining the number of asperities. The relationship between macro parameters, such as contact stiffness and micro parameters on the joint surface, is established.


2021 ◽  
Vol 12 (1) ◽  
pp. 41-50
Author(s):  
Linbo Zhu ◽  
Jian Chen ◽  
Zaoxiao Zhang ◽  
Jun Hong

Abstract. A normal contact stiffness model considering 3D topography and elastic–plastic contact of rough surfaces is presented in this paper. The asperities are generated from the measured surfaces using the watershed segmentation and a modified nine-point rectangle. The topography parameters, including the asperity locations, heights, and radii of the summit, are obtained. Asperity shoulder–shoulder contact is considered. The relationship of the contact parameters, such as the contact force, the deformation, and the mean separation of two surfaces, is modelled in the three different contact regimes, namely elastic, elastic–plastic and fully plastic. The asperity contact state is determined, and if the contact occurs, the stiffness of the single asperity pair is calculated and summed as the total normal stiffness of two contact surfaces. The developed model is validated using experimental tests conducted on two types of specimens and is compared with published theoretical models.


2013 ◽  
Vol 760-762 ◽  
pp. 2064-2067 ◽  
Author(s):  
Jing Fang Shen ◽  
Ke Xiang Wu ◽  
Fei Yang

In this article, according to WenShuHua and Zhangxueniang fractal model, we point out the deficiency. Based on the fractal theory and Zhang, Wens contact stiffness fractal model, this paper puts forward Gamma distribution of rough joint surface normal contact stiffness. This paper considers micro convex body for ellipsoid, contact area for elliptic. This is slightly convex body for sphere hypothesis is more close to the actual situation. At the same time by using statistics theory, considering the contact ellipse long, short axis a and b are greater than zero, the assumption of a and b to two-dimensional Gamma distribution, it is more suitable for engineering practice.


2011 ◽  
Vol 328-330 ◽  
pp. 336-345
Author(s):  
Guo Sheng Lan ◽  
Xue Liang Zhang ◽  
Hong Qin Ding ◽  
Shu Hua Wen ◽  
Zhong Yang Zhang

Through the analysis and research on three fractal models of normal contact stiffness of joint interfaces, the differences between them can be found. Furthermore, numerical simulation was carried out to obtain the complicated nonlinear relations between normal contact stiffness and the normal load. The results show that the normal contact stiffness increases with the normal load, decreases with G but complicatedly varies with D. According to different fractal dimension, we can chose an appropriate one among the three fractal models of normal contact stiffness of joint interfaces when describing normal contact stiffness of joint interfaces.


Author(s):  
Yongquan Zhang ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
He Ling ◽  
Wei Fan ◽  
...  

Considering the rough surface as a fractal model makes the research of contact parameters more practical. In the fractal model of the machined surface, the parameters describing the surface topography are independent of the measurement resolution. Based on the elastic, elasto-plastic and plastic deformations of a single pair of contact asperities, a normal contact stiffness model using the fractal model for surface topography description is proposed in this paper. The specimens machined by milling and grinding methods are used to verify the proposed contact stiffness model based on the fractal theory. The experimental and theoretical results indicate that the proposed contact stiffness model is appropriate for the machined joint surfaces.


Sign in / Sign up

Export Citation Format

Share Document