Energy transfer through parametric excitation to reduce self-excited drill string vibrations

2021 ◽  
pp. 107754632110310
Author(s):  
Vincent Kulke ◽  
Georg-Peter Ostermeyer

Drilling a wellbore can result in several types of vibration that lead to inefficient drilling and premature failure of drill string components. These vibrations are subdivided based on their operating direction into lateral, torsional, and axial vibrations. Especially in hard and dense formations, high-frequency torsional oscillations are found in the bottom-hole assembly (BHA). These critical vibrations are induced by a self-excitation mechanism caused by the bit–rock interaction. Self-excitation mechanisms are regenerative effects, mode coupling, or a velocity-dependent torque characteristic at the drill bit. To increase drilling performance and reduce tool failure due to high-frequency torsional oscillations, the critical vibration amplitudes localized at the bottom-hole assembly need to be minimized. Increasing the damping of self-excited systems to affect the energy output during vibration is a common approach to mitigate self-excited vibrations. In drilling systems, the achievable damping is naturally limited by the small installation space due to the drilled borehole diameter. Therefore, alternative methods to influence vibrations are necessary. Applying parametric excitation in self-excited systems can result in a parametric anti-resonance and therefore in an energy transfer within different modes of the structure. This allows, among other benefits, improved utilization of the structural damping. In this article, the influence of additional stiffness–based parametric excitation on self-excited torsional vibration in downhole drilling systems is investigated. For this purpose, a finite element model of a drill string is reduced using the component mode synthesis and analyzed with the goal to mitigate torsional vibrations. The multiple degree of freedom drill string model is investigated regarding the additional energy transfer due to the parametric excitation. Robustness of various parameters, especially with regard to the positioning within the bottom-hole assembly, is analyzed and discussed. Additionally, the problem of multiple unstable self-excited modes due to the nonlinear velocity-dependent torque characteristic in drilling systems is addressed.

Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Author(s):  
Ya. M. Kochkodan ◽  
A.I. Vasko

The article presents the main factors affecting the buckling when drilling vertical wells. The authors study analytically the effect of the weight on the bit and the force of the interaction of a drill string with a borehole wall using a uniform-sized arrangement of the bottom-hole assembly and the borehole wall which is located in a deviated wellbore when drilling in isotropic rocks in case the drilling direction coincides with the direction of the force acting on the bit. Differential equations of the elastic axis of the drill string are worked out. The solutions of these equations have given nondimensional dependences between the technological parameters. The authors have obtained the graphical dependences of the distance from the bit to the “drill string - borehole wall” contact point and the normal reaction of the bottom to the bit and the “drill string - borehole wall” clearance. The dependence for identifying the drilling anisotropy index in oblique beds is obtained. An interrelation between the anisotropy drilling index, the zenith angle, the bedding angle, the bottom-hole assembly, the borehole dimensions and the axial weight on the bit has been established. The authors have studied analytically the effect of the weight on the bit and the force of the “drill string - borehole wall” interaction, when installing the centralizer to the bottom-hole assembly. The differential equations of the elastic axis of the drill string with the centralizer in the bottom-hole assembly are obtained. It is established that with the increase in the axial weight on the bit and the “drill collars - borehole wall” clearance, the distance from the bit to the contact point of the borehole wall decreases; whereas with the increase of the deviation angle and the clearance, the pressure force of the column on the walls increases. It has also been established that the anisotropy drilling index reduces the distance from the bit to the point contact both in a slick BHA and in the bottom hole assembly with the centralizer. The presence of a centralizer in the bottom hole assembly increases the distance from the bit to the contact point between the string and the borehole wall, makes it possible to increase the weight on the bit without the risk of increasing a deviation angle.


2014 ◽  
Vol 50 (9-10) ◽  
pp. 583-587
Author(s):  
S. A. Zaurbekov ◽  
B. Z. Kaliev ◽  
M. Zh. Muzaparov ◽  
Zh. N. Kadyrov ◽  
A. V. Kochetkov

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Parimal Arjun Patil ◽  
Catalin Teodoriu

Drillstring vibration is one of the limiting factors maximizing drilling performance. Torsional vibrations/oscillations while drilling is one of the sever types of drillstring vibration which deteriorates the overall drilling performance, causing damaged bit, failure of bottom-hole assembly, overtorqued tool joints, torsional fatigue of drillstring, etc. It has been identified that the wellbore-drillstring interaction and well face-drill bit interaction are the sources of excitation of torsional oscillations. Predrilling analysis and real time analysis of drillstring dynamics is becoming a necessity for drilling oil/gas or geothermal wells in order to optimize surface drilling parameters and to reduce vibration related problems. It is very challenging to derive the drillstring model considering all modes of vibrations together due to the complexity of the phenomenon. This paper presents the mathematical model of a torsional drillstring based on nonlinear differential equations which are formulated considering drillpipes and bottom-hole assembly separately. The bit–rock interaction is represented by a nonlinear friction forces. Parametric study has been carried out analyzing the influence of drilling parameters such as surface rotations per minute (RPM) and weight-on-bit (WOB) on torsional oscillations. Influences of properties of drillstring like stiffness and inertia, which are most of the times either unknown or insufficiently studied during modeling, on torsional oscillation/stick-slip is also studied. The influences of different rock strength on rate of penetration (ROP) considering the drilling parameters have also been studied. The results show the same trend as observed in fields.


2021 ◽  
Author(s):  
Pratama Wangsit Bayuartha ◽  
Parluhutan Alvin Sitorus ◽  
Rahmat Sinaga ◽  
Tomi Sugiarto ◽  
Kristoforus Widyas Tokoh ◽  
...  

Abstract As conventional fishing assembly offers a degree of recovery chance, such chance can be increased by utilizing an Oscillating Fishing Tool (OFT). The OFT is a fishing Bottom Hole Assembly (BHA) component that delivers low-magnitude; high-frequency oscillation. The continuous motion that the tool provides complements the impact generated by the fishing jar. This paper reviews the successful case history in Field X, which was in fact the first utilization of OFT for a fishing application in the field. Method of analysis involve comparing fishing sequence without and with the OFT. The OFT was used in Offshore Field X to recover a mechanically stuck 550-meter long Tubing Conveyed Perforating Gun assembly inside 9 5/8" casing that could potentially lead to loss of access into the 6 oil reserves candidate perforation zones. Initially the assembly had been stuck for two days, during which conventional fishing BHA was used to retrieve it to no avail, even after jarring for most of that time. OFT was then incorporated in the final fishing BHA and operated in combination with jarring operation. After around twelve hours of oscillating and jarring, the fish was able to be released from the initial stuck point. When tripping the string out, however, the assembly was stuck at high dog-leg severity area near the surface. At that point, in combination with applying substantial overpull, OFT was utilized further to recover the entire string. Upon fish retrieval, it was evident that post detonation, the TCP gun had swelled into 8.6 inches in diameter. In summary, oscillating and jarring for thirty-six cumulative hours successfully released the swelled TCP gun assembly from the stuck occurrences. In conclusion, the operation showed that the OFT serves as a higher level of fishing tool option that offers a particular excitation mode to the stuck assembly. Stuck assembly in a cased hole presents potential loss of oil reserves. Particularly in offshore application, the situation can also be costly. With reduced chance of recovery as time passes by, operation is hindered from being able to proceed to the next completion phase. The case proved OFT to have played an important role in improving fishing probability of success and should be considered as standard fishing BHA in the future.


2021 ◽  
Author(s):  
Kelly Scott Sims ◽  
John Abhishek Bomidi ◽  
William Anthony Moss ◽  
Thomas Andrew Wilson

Abstract With the ever-increasing pressure to drill wells efficiently at lower costs, the utilization of downhole sensors in the Bottom Hole Assembly (BHA) that reveal true downhole dynamics has become scarce. Surface sensors are notoriously inaccurate in translating readings to an accurate representation of downhole dynamics. The issue of 1 to 1 interpretation of surface to downhole dynamics is prevalent in all sensors and creates a paradigm of inefficient drilling practices and decision making. Intelligent mapping of downhole dynamics (IMoDD) is an analytical suite to address these inefficiencies and maximize the use of surface sensors, thus doing more with less. IMoDD features a new zeroing beyond the traditional workflows of zeroing the surface sensors related to weight and torque at the connection. A new method, Second-order Identifier of Maximum Stand-pipe-pressure: SIMS, is introduced. The method examines changes in stand-pipe pressure and identifies the point before bit-wellbore contact, using a set of conditions. The resulting calculations of weight and torque are verified with measured values of downhole weight and torque, for multiple stands of drilling in vertical, curve-lateral drilling. After the new zero, the deviation of torque-weight correlations is further examined to reveal the downhole weight changes confirmed also by the downhole sensor data. It is demonstrated that an intelligent mapping system that improves downhole characterizations would improve decision making to facilitate smoother energy transfer thus reducing Non-Productive Time (NPT) and increasing BHA life span.


2017 ◽  
Author(s):  
Heinisch Dennis ◽  
Winkler Mathäus ◽  
Herbig Christian ◽  
Hohl Andreas ◽  
Reckmann Hanno

2019 ◽  
pp. 30-38
Author(s):  
Rasul M. Aliyev ◽  
Shamil M. Kurbanov ◽  
Temirlan M. Umariev

The issue of vertical wells curvature is important, especially when conducting wells in complex geological conditions of drilling, due to the increasing depth of the wells and the corresponding rise in the cost of drilling. The cause of this circumstance lies in the large time and financial costs while flattening of the bent wells. Moreover, it should be noted that during the subsequent drilling of a curved well the risk of key-seating and the corresponding complications increases. That is why large oil field service companies and drilling enterprises are paying more and more attention to solving the problem of vertical wells curvature. This article is devoted to investigation the effect of rotation of the drill string on the deflecting force on the bit while drilling a vertical well in a rotary way. We suggest using of eccentric drill collars for drilling vertical wells in difficult geological conditions. Also, we create an expression for the dynamic milling force on the bit, taking into account the usage of an eccentric drill collar in the composition of bottom-hole assembly.


2021 ◽  
Vol 6 (1) ◽  
pp. 42-51
Author(s):  
D. N. Moldashi

With increasing depth of exploration and process boreholes (at small drilling diameters), the probability of deviation of the borehole path from design trajectory increases many times; i. e. zenith curvature and azimuth deviation of the borehole path occur. Therefore, developing methods for keeping vertical path of the borehole when drilling deeper horizons of ore bodies is a very topical issue. The paper presents the results of developing a new bottom-hole assembly for drilling boreholes in soft rocks using screw casing centralizers, which provide good stabilizing and centering effects to mitigate horizontal departure of the hole axis from the design direction and minimize vertical curvature of the hole path (zenith angle) while maintaining sufficient drill string flexibility. The developed technical solutions provide simplicity of design and ability to adapt to wide range of mining, geological and technological drilling conditions. The feasibility of manufacturing the centralizers by own efforts and the technological feasibility of quick and easy connecting the centralizer with other elements of the bottom-hole assembly have been substantiated. The manufacture efficiency is proved by the use of inexpensive and wear-resistant materials in the centralizer armouring, for which tungsten-cobalt or titanium-cobalt hard-alloy inserts were used. In addition, prevailing volume of borehole drilling in soft rocks allowed using replaceable centering elements, as well as their repair and restoration to increase their service life. The manufactured centralizer has a low production cost due to the design simplicity and the use of inexpensive wearresistant material and will compete in the market of drilling tools and technical devices for drill string stabilization. The economic effect from the introduction of the self-produced centralizers amounted to more than 170,000 tenge per a borehole.


2021 ◽  
Author(s):  
Krzysztof Karol Machocki ◽  
Abdulwahab Aljohar ◽  
David Zhan ◽  
Ayodeji Abegunde

Abstract A new down hole system and method to use for releasing stuck pipes is presented. New system design, features and limits are compared to commonly used techniques for releasing stuck pipe showing benefits of the new system when dealing with differential stuck pipe incidents. The new down hole system is capable to deliver much greater forces when compared to jars and other down hole accelerators near the stuck point. This system can generate over 40G`s lateral forces continuously down the hole acting on the stuck pipe area. The system can be integrated into a Bottom Hole Assembly (BHA) and activated once drill string become stuck or run as a part of the remediate assembly. Different aspects of two types of assemblies are described outlining the benefits and drawbacks. The author will discuss in details the background and rationale to the new technology, including a review of differential sticking challenges and functionality of this new system. The new system was compared to the most commonly used techniques for releasing differentially stuck pipe. Previously not releasable stuck pipe forces of over 1,000,000 lb. can now be overcome with the presented new approach to generate down hole forces near the stuck place. Flexibility in system integration and deployment allows for further optimization in BHA design and cost affective fishing operations in dedicated hole sections. This new approach can be implemented to release the most challenging stuck pipe mechanisms in drilling to minimize NPT and cost associated with stuck pipe, remedial operations and sidetracks. Similar approach can be utilized to release differentially stuck pipes, tubing and completions. The novelty of this stuck pipe release system is the entire down hole system and operations of the overall system using new approach to generate large shocks down the hole. Additional novelty is related to flexibility during integration and deployment of this system. Similar to current shock tools, this system can be placed in BHA, fishing type assemblies and also pumped down inside of the stuck drill string to save time and cost.


Sign in / Sign up

Export Citation Format

Share Document