A New Down Hole Tool and Approach To Release Differentially Stuck Pipe

2021 ◽  
Author(s):  
Krzysztof Karol Machocki ◽  
Abdulwahab Aljohar ◽  
David Zhan ◽  
Ayodeji Abegunde

Abstract A new down hole system and method to use for releasing stuck pipes is presented. New system design, features and limits are compared to commonly used techniques for releasing stuck pipe showing benefits of the new system when dealing with differential stuck pipe incidents. The new down hole system is capable to deliver much greater forces when compared to jars and other down hole accelerators near the stuck point. This system can generate over 40G`s lateral forces continuously down the hole acting on the stuck pipe area. The system can be integrated into a Bottom Hole Assembly (BHA) and activated once drill string become stuck or run as a part of the remediate assembly. Different aspects of two types of assemblies are described outlining the benefits and drawbacks. The author will discuss in details the background and rationale to the new technology, including a review of differential sticking challenges and functionality of this new system. The new system was compared to the most commonly used techniques for releasing differentially stuck pipe. Previously not releasable stuck pipe forces of over 1,000,000 lb. can now be overcome with the presented new approach to generate down hole forces near the stuck place. Flexibility in system integration and deployment allows for further optimization in BHA design and cost affective fishing operations in dedicated hole sections. This new approach can be implemented to release the most challenging stuck pipe mechanisms in drilling to minimize NPT and cost associated with stuck pipe, remedial operations and sidetracks. Similar approach can be utilized to release differentially stuck pipes, tubing and completions. The novelty of this stuck pipe release system is the entire down hole system and operations of the overall system using new approach to generate large shocks down the hole. Additional novelty is related to flexibility during integration and deployment of this system. Similar to current shock tools, this system can be placed in BHA, fishing type assemblies and also pumped down inside of the stuck drill string to save time and cost.

Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Author(s):  
Ya. M. Kochkodan ◽  
A.I. Vasko

The article presents the main factors affecting the buckling when drilling vertical wells. The authors study analytically the effect of the weight on the bit and the force of the interaction of a drill string with a borehole wall using a uniform-sized arrangement of the bottom-hole assembly and the borehole wall which is located in a deviated wellbore when drilling in isotropic rocks in case the drilling direction coincides with the direction of the force acting on the bit. Differential equations of the elastic axis of the drill string are worked out. The solutions of these equations have given nondimensional dependences between the technological parameters. The authors have obtained the graphical dependences of the distance from the bit to the “drill string - borehole wall” contact point and the normal reaction of the bottom to the bit and the “drill string - borehole wall” clearance. The dependence for identifying the drilling anisotropy index in oblique beds is obtained. An interrelation between the anisotropy drilling index, the zenith angle, the bedding angle, the bottom-hole assembly, the borehole dimensions and the axial weight on the bit has been established. The authors have studied analytically the effect of the weight on the bit and the force of the “drill string - borehole wall” interaction, when installing the centralizer to the bottom-hole assembly. The differential equations of the elastic axis of the drill string with the centralizer in the bottom-hole assembly are obtained. It is established that with the increase in the axial weight on the bit and the “drill collars - borehole wall” clearance, the distance from the bit to the contact point of the borehole wall decreases; whereas with the increase of the deviation angle and the clearance, the pressure force of the column on the walls increases. It has also been established that the anisotropy drilling index reduces the distance from the bit to the point contact both in a slick BHA and in the bottom hole assembly with the centralizer. The presence of a centralizer in the bottom hole assembly increases the distance from the bit to the contact point between the string and the borehole wall, makes it possible to increase the weight on the bit without the risk of increasing a deviation angle.


2014 ◽  
Vol 50 (9-10) ◽  
pp. 583-587
Author(s):  
S. A. Zaurbekov ◽  
B. Z. Kaliev ◽  
M. Zh. Muzaparov ◽  
Zh. N. Kadyrov ◽  
A. V. Kochetkov

2019 ◽  
Vol 59 (5) ◽  
pp. 875-880
Author(s):  
E. A. Konstantinov

A new technology for coring of weakly consolidated sediment is proposed. The technology includes the original coring system and the way it is operated. The technology is based on a number of original solutions: 1) unification of the elements of the drill string, where household pipes made of PVC are used as a sampler and rods; 2) the use of the valve mechanism of a simple conical construction; 3) the method of vertical freezing of the core in open air. The coring system makes it possible to obtain the cores of the bottom sediment in winter from ice at a depth of up to 710 meters. Field tests have shown that the proposed system is inexpensive, easy to assemble and operate, but at the same time very effective and reliable. The new system can be as an alternative or complement to existing systems for coring of bottom sediments.


2019 ◽  
pp. 30-38
Author(s):  
Rasul M. Aliyev ◽  
Shamil M. Kurbanov ◽  
Temirlan M. Umariev

The issue of vertical wells curvature is important, especially when conducting wells in complex geological conditions of drilling, due to the increasing depth of the wells and the corresponding rise in the cost of drilling. The cause of this circumstance lies in the large time and financial costs while flattening of the bent wells. Moreover, it should be noted that during the subsequent drilling of a curved well the risk of key-seating and the corresponding complications increases. That is why large oil field service companies and drilling enterprises are paying more and more attention to solving the problem of vertical wells curvature. This article is devoted to investigation the effect of rotation of the drill string on the deflecting force on the bit while drilling a vertical well in a rotary way. We suggest using of eccentric drill collars for drilling vertical wells in difficult geological conditions. Also, we create an expression for the dynamic milling force on the bit, taking into account the usage of an eccentric drill collar in the composition of bottom-hole assembly.


2021 ◽  
Vol 6 (1) ◽  
pp. 42-51
Author(s):  
D. N. Moldashi

With increasing depth of exploration and process boreholes (at small drilling diameters), the probability of deviation of the borehole path from design trajectory increases many times; i. e. zenith curvature and azimuth deviation of the borehole path occur. Therefore, developing methods for keeping vertical path of the borehole when drilling deeper horizons of ore bodies is a very topical issue. The paper presents the results of developing a new bottom-hole assembly for drilling boreholes in soft rocks using screw casing centralizers, which provide good stabilizing and centering effects to mitigate horizontal departure of the hole axis from the design direction and minimize vertical curvature of the hole path (zenith angle) while maintaining sufficient drill string flexibility. The developed technical solutions provide simplicity of design and ability to adapt to wide range of mining, geological and technological drilling conditions. The feasibility of manufacturing the centralizers by own efforts and the technological feasibility of quick and easy connecting the centralizer with other elements of the bottom-hole assembly have been substantiated. The manufacture efficiency is proved by the use of inexpensive and wear-resistant materials in the centralizer armouring, for which tungsten-cobalt or titanium-cobalt hard-alloy inserts were used. In addition, prevailing volume of borehole drilling in soft rocks allowed using replaceable centering elements, as well as their repair and restoration to increase their service life. The manufactured centralizer has a low production cost due to the design simplicity and the use of inexpensive wearresistant material and will compete in the market of drilling tools and technical devices for drill string stabilization. The economic effect from the introduction of the self-produced centralizers amounted to more than 170,000 tenge per a borehole.


2021 ◽  
pp. 107754632110310
Author(s):  
Vincent Kulke ◽  
Georg-Peter Ostermeyer

Drilling a wellbore can result in several types of vibration that lead to inefficient drilling and premature failure of drill string components. These vibrations are subdivided based on their operating direction into lateral, torsional, and axial vibrations. Especially in hard and dense formations, high-frequency torsional oscillations are found in the bottom-hole assembly (BHA). These critical vibrations are induced by a self-excitation mechanism caused by the bit–rock interaction. Self-excitation mechanisms are regenerative effects, mode coupling, or a velocity-dependent torque characteristic at the drill bit. To increase drilling performance and reduce tool failure due to high-frequency torsional oscillations, the critical vibration amplitudes localized at the bottom-hole assembly need to be minimized. Increasing the damping of self-excited systems to affect the energy output during vibration is a common approach to mitigate self-excited vibrations. In drilling systems, the achievable damping is naturally limited by the small installation space due to the drilled borehole diameter. Therefore, alternative methods to influence vibrations are necessary. Applying parametric excitation in self-excited systems can result in a parametric anti-resonance and therefore in an energy transfer within different modes of the structure. This allows, among other benefits, improved utilization of the structural damping. In this article, the influence of additional stiffness–based parametric excitation on self-excited torsional vibration in downhole drilling systems is investigated. For this purpose, a finite element model of a drill string is reduced using the component mode synthesis and analyzed with the goal to mitigate torsional vibrations. The multiple degree of freedom drill string model is investigated regarding the additional energy transfer due to the parametric excitation. Robustness of various parameters, especially with regard to the positioning within the bottom-hole assembly, is analyzed and discussed. Additionally, the problem of multiple unstable self-excited modes due to the nonlinear velocity-dependent torque characteristic in drilling systems is addressed.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Li Zifeng ◽  
Li Jingyuan

A new type of rotary steering stabilizer used in a common rotary bottom hole assembly (BHA) to control well path was developed. In order for design and use of this kind of BHA, mathematical models were proposed for 3D mechanical analysis of rotary steering BHA with small deflection. The mathematical models include (1) differential equations; (2) boundary conditions of drill bit, stabilizer, diameter change, tangent point, and bore hole wall; (3) methods for calculating lateral forces and deflection angles of the bit; and (4) models for determining navigation ability and navigation parameters. As an example, a given rotary steering BHA was studied.


Author(s):  
Y. D. Mulia

For S-15 and S-14 wells at South S Field, drilling of the 12-1/4” hole section became the longest tangent hole section interval of both wells. There were several challenges identified where hole problems can occur. The hole problems often occur in the unconsolidated sand layers and porous limestone formation sections of the hole during tripping in/out operations. Most of the hole problems are closely related to the design of the Bottom Hole Assembly (BHA). In many instances, hole problems resulted in significant additional drilling time. As an effort to resolve this issue, a new BHA setup was then designed to enhance the BHA drilling performance and eventually eliminate hole problems while drilling. The basic idea of the enhanced BHA is to provide more annulus clearance and limber BHA. The purpose is to reduce the Equivalent Circulating Density (ECD,) less contact area with formation, and reduce packoff risk while drilling through an unconsolidated section of the rocks. Engineering simulations were conducted to ensure that the enhanced BHA were able to deliver a good drilling performance. As a results, improved drilling performance can be seen on S-14 well which applied the enhanced BHA design. The enhanced BHA was able to drill the 12-1/4” tangent hole section to total depth (TD) with certain drilling parameter. Hole problems were no longer an issue during tripping out/in operation. This improvement led to significant rig time and cost savings of intermediate hole section drilling compared to S-15 well. The new enhanced BHA design has become one of the company’s benchmarks for drilling directional wells in South S Field.


Sign in / Sign up

Export Citation Format

Share Document