scholarly journals Interdiffusion in many dimensions: mathematical models, numerical simulations and experiment

2020 ◽  
Vol 25 (12) ◽  
pp. 2178-2198
Author(s):  
Lucjan Sapa ◽  
Bogusław Bożek ◽  
Katarzyna Tkacz–Śmiech ◽  
Marek Zajusz ◽  
Marek Danielewski

Over the last two decades, there have been tremendous advances in the computation of diffusion and today many key properties of materials can be accurately predicted by modelling and simulations. In this paper, we present, for the first time, comprehensive studies of interdiffusion in three dimensions, a model, simulations and experiment. The model follows from the local mass conservation with Vegard’s rule and is combined with Darken’s bi-velocity method. The approach is expressed using the nonlinear parabolic–elliptic system of strongly coupled differential equations with initial and nonlinear coupled boundary conditions. Implicit finite difference methods, preserving Vegard’s rule, are generated by some linearization and splitting ideas, in one- and two-dimensional cases. The theorems on the existence and uniqueness of solutions of the implicit difference schemes and the consistency of the difference methods are studied. The numerical results are compared with experimental data for a ternary Fe-Co-Ni system. A good agreement of both sets is revealed, which confirms the strength of the method.

2019 ◽  
Vol 24 (2) ◽  
pp. 276-296 ◽  
Author(s):  
Lucjan Sapa ◽  
Bogusław Bożek ◽  
Marek Danielewski

In this work we consider the one and multidimensional diffusional transport in an s-component solid solution. The new model is expressed by the nonlinear parabolic-elliptic system of strongly coupled differential equations with the initial and the nonlinear coupled boundary conditions. It is obtained from the local mass conservation law for fluxes which are a sum of the diffusional and Darken drift terms, together with the Vegard rule. The considered boundary conditions allow the physical system to be not only closed but also open. We construct the implicit finite difference methods (FDM) generated by some linearization idea, in the one and two-dimensional cases. The theorems on existence and uniqueness of solutions of the implicit difference schemes, and the theorems concerned convergence and stability are proved. We present the approximate concentrations, drift and its potential for a ternary mixture of nickel, copper and iron. Such difference methods can be also generalized on the three-dimensional case. The agreement between the theoretical results, numerical simulations and experimental data is shown.


Author(s):  
Gary A. Glatzmaier

This chapter considers two ways of employing a spatial resolution that varies with position within a finite-difference method: using a nonuniform grid and mapping to a new coordinate variable. It first provides an overview of nonuniform grids before discussing coordinate mapping as an alternative way of achieving spatial discretization. It then describes an approach for treating both the vertical and horizontal directions with simple finite-difference methods: defining a streamfunction, which automatically satisfies mass conservation, and solving for vorticity via the curl of the momentum conservation equation. It also explains the use of the Chebyshev–Fourier method to simulate the convection or gravity wave problem by employing spectral methods in both the horizontal and vertical directions. Finally, it looks at the basic ideas and some issues that need to be addressed with respect to parallel processing as well as choices that need to be made when designing a parallel code.


Geophysics ◽  
1994 ◽  
Vol 59 (5) ◽  
pp. 844-849 ◽  
Author(s):  
M. Ali Riahi ◽  
Christopher Juhlin

Finite‐difference methods have generally been used to solve dynamic wave propagation problems over the last 25 years (Alterman and Karal, 1968; Boore, 1972; Kelly et al., 1976; and Levander, 1988). Recently, finite‐difference methods have been applied to the eikonal equation to calculate the kinematic solution to the wave equation (Vidale, 1988 and 1990; Podvin and Lecomte, 1991; Van Trier and Symes, 1991; Qin et al., 1992). The calculation of the first‐arrival times using this method has proven to be considerably faster than using classical ray tracing, and problems such as shadow zones, multipathing, and barrier penetration are easily handled. Podvin and Lecomte (1991) and Matsuoka and Ezaka (1992) extended and expanded upon Vidale’s (1988) algorithm to calculate traveltimes for reflected waves in two dimensions. Based on finite‐difference calculations for first‐arrival times, Hole et al. (1992) devised a scheme for inverting synthetic and real data to estimate the depth to refractors in the crust in three dimensions. The method of Hole et al. (1992) for inversion is computationally efficient since it avoids the matrix inversion of many of the published schemes for refraction and reflection traveltime data (Gjøystdal and Ursin, 1981).


2007 ◽  
Vol 7 (1) ◽  
pp. 68-82
Author(s):  
K. Kropielnicka

AbstractA general class of implicit difference methods for nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type is constructed. Convergence results are proved by means of consistency and stability arguments. It is assumed that given functions satisfy nonlinear estimates of Perron type with respect to functional variables. Differential equations with deviated variables and differential integral problems can be obtained from a general model by specializing given operators. The results are illustrated by numerical examples.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


Sign in / Sign up

Export Citation Format

Share Document