Influence of low water activity on the thermal resistance of Salmonella Enteritidis PT30 and Enterococcus faecium as its surrogate in egg powders

2020 ◽  
pp. 108201322093787
Author(s):  
Marco E Pérez-Reyes ◽  
Xu Jie ◽  
Mei-Jun Zhu ◽  
Juming Tang ◽  
Gustavo V Barbosa-Cánovas

Egg powders are increasingly popular ingredients, due to their functionality and compactness, in industrial food production and preparation at homes. However, there is a lack of studies that evaluate the thermal resistance of Salmonella Enteritidis PT30 and its potential surrogate Enterococcus faecium NRRL B-2354 in egg powders. This study examined the log-linear relationship between the thermal resistance of Salmonella Enteritidis (D-value) and the water activity (aw) of egg powders. The changes of aw in the egg powders with temperature were measured using a Vapor Sorption Analyzer and a high-temperature cell. The D80 ℃-value of S. Enteritidis PT30 and E. faecium inoculated in the egg powders preconditioned to three aw levels (0.3, 0.45, and 0.6) at 20 ℃ were determined using aluminum thermal death test cells. The aw values increased (P < 0.05) in all three egg powders when the temperature of the samples was raised from room temperature to 80 ℃. The D80 ℃-values ranged from 5.3 ± 0.1 to 25.9 ± 0.2 min for S. Enteritidis while 10.4 ± 0.4 to 43.8 ± 0.4 for E. faecium in samples of the three different aw levels. S. Enteritidis PT30 showed a log-linear relationship between D80 ℃-values and aw80 ℃ for the egg powders. This study contributes to our understanding of the impact of aw on the development of thermal treatments for low-moisture foods.

2018 ◽  
Vol 84 (8) ◽  
pp. e02742-17 ◽  
Author(s):  
Shuxiang Liu ◽  
Juming Tang ◽  
Ravi Kiran Tadapaneni ◽  
Ren Yang ◽  
Mei-Jun Zhu

ABSTRACTSalmonellaspp. exhibit prolonged survivability and high tolerance to heat in low-moisture foods. The reported thermal resistance parameters ofSalmonellaspp. in low-moisture foods appear to be unpredictable due to various unknown factors. We report here that temperature-dependent water activity (aw, treatment temperature) plays an important role in the sharply increased thermal resistance ofSalmonella entericaserovar Enteritidis PT 30 and its potential surrogateEnterococcus faeciumNRRL B-2354. In our study, silicon dioxide granules, as carriers, were separately inoculated with these two microorganisms and were heated at 80°C with controlled relative humidity between 18 and 72% (resulting in corresponding aw,80°Cvalues for bacteria between 0.18 and 0.72) in custom-designed test cells. The inactivation kinetics of both microorganisms fitted a log-linear model (R2, 0.83 to 0.97). Reductions in the aw,80°Cvalues of bacterial cells exponentially increased theD80°C(the time needed to achieve a 1-log reduction in a bacterial population at 80°C) values forS. Enteritidis andE. faeciumon silicon dioxide. The log-linear relationship between theD80°Cvalues for each strain in silicon dioxide and its aw,80°Cvalues was also verified for organic wheat flour.E. faeciumshowed consistently higherD80°Cvalues thanS. Enteritidis over the aw,80°Crange tested. The estimated zaw(the change in aw,80°Cneeded to changeD80°Cby 1 log) values ofS. Enteritidis andE. faeciumwere 0.31 and 0.28, respectively. This study provides insight into the interpretation ofSalmonellathermal resistance that could guide the development and validation of thermal processing of low-moisture foods.IMPORTANCEIn this paper, we established that the thermal resistance of the pathogenS. Enteritidis and its surrogateEnterococcus faecium, as reflected byDvalues at 80°C, increases sharply with decreasing relative humidity in the environment. The log-linear relationship between theD80°Cvalues of each strain in silicon dioxide and its aw,80°Cvalues was also verified for organic wheat flour. The results provide new quantitative insight into the way in which the thermal resistance of microorganisms changes in low-moisture systems, and they should aid in the development of effective thermal treatment strategies for pathogen control in low-moisture foods.


2019 ◽  
Vol 82 (2) ◽  
pp. 194-199 ◽  
Author(s):  
PICHAMON LIMCHAROENCHAT ◽  
MICHAEL K. JAMES ◽  
BRADLEY P. MARKS

ABSTRACT Salmonella survival and thermal resistance on the surface of almond kernels were evaluated after periods of storage. Almond kernels were inoculated with Salmonella Enteritidis PT 30 and equilibrated to 0.45 water activity. Samples were separated into two groups (I and II) and stored in sealed metal cans at room temperature. Group I samples (stored 7, 15, 27, and 68 weeks) were re-equilibrated in controlled humidity chambers to 0.45 water activity before performing the thermal treatments after each storage period, but group II samples (stored 70 and 103 weeks) were thermally treated immediately after the cans were opened. For thermal treatments, individual almond kernels were vacuum sealed in thin plastic bags, heated isothermally in a water bath (80°C) for nine intervals, immediately cooled in an ice bath, and assayed for surviving Salmonella. Log-linear and Weibull models were fit to the inactivation data. Salmonella population decreased (P &lt; 0.05) more than 2 log CFU/g during the long-term storage. Salmonella survival in group II at 70 weeks (7.3 log CFU/g) was higher (P &lt; 0.05) than in group I (which had been re-equilibrated multiple times) at 68 weeks (6.2 log CFU/g). However, the thermal resistance of Salmonella Enteritidis PT 30 did not decrease (P &gt; 0.05) for up to 68 weeks of storage, and the log-linear model best described the thermal inactivation data. Overall, the results suggest that re-equilibrating almonds (group I) multiple times may have increased the rate of reduction of Salmonella populations during long-term storage. However, Salmonella thermal resistance on almonds appears to be essentially unaffected by long-term storage, which is important information for designing and conducting validation studies for pathogen control processes.


2019 ◽  
Vol 82 (7) ◽  
pp. 1110-1115 ◽  
Author(s):  
NURUL HAWA AHMAD ◽  
CEMRE ÖZTABAK ◽  
BRADLEY P. MARKS ◽  
ELLIOT T. RYSER

ABSTRACTDry inoculation (DI) methods using a dry carrier have gained considerable interest for assessing thermal inactivation of Salmonella and other microorganisms in low-moisture foods. However, the effect of carrier residues on microbial resistance to heat remains largely unknown. This study aimed to determine the effect of talc powder on thermal resistance of Enterococcus faecium NRRL-B2354 (a Salmonella surrogate) in almond meal at 0.45 water activity (aw). Whole almonds were either immersed in an E. faecium suspension for wet inoculation (WI) or mixed with inoculated talc powder for DI. Two additional experimental conditions, inoculation of WI almond meal with added uninoculated talc (WT) and inoculated talc powder alone, were conducted. After WI, DI, and WT, the almonds were equilibrated to 0.45 aw, ground into a meal, and reequilibrated to 0.45 aw. Isothermal treatments were performed by heating almond meal (about 1 g) in aluminum test cells in a water bath at 80°C, with samples collected at more than five sequential time points from triplicate isothermal runs. E. faecium was enumerated by immediately cooling, diluting, and plating the samples on a nonselective or differential medium. E. faecium was more thermally resistant in DI (D80°C: 63.5 ± 1.9 min) compared with WI almond meal (D80°C: 40.5 ± 1.0 min; P &lt; 0.05), but the resistance in WT almond meal (46.9 ± 0.9 min) was between and different from (P &lt; 0.05) both DI and WI. E. faecium was less resistant in talc powder alone (20.6 ± 1.1 min) compared with all other almond meal samples. Overall, residual talc affected the thermal resistance of E. faecium. Therefore, when determining thermal resistance or validating commercial processes, carriers such as talc should not be used for inoculation of low-moisture foods without first knowing their impact on the target organism.HIGHLIGHTS


Food Control ◽  
2021 ◽  
Vol 126 ◽  
pp. 108037
Author(s):  
Mei-Jun Zhu ◽  
Xia Song ◽  
Hsieh-Chin Tsai ◽  
Xiaoye Shen ◽  
Michael Taylor ◽  
...  

2015 ◽  
Vol 78 (6) ◽  
pp. 1106-1112 ◽  
Author(s):  
ELENA ENACHE ◽  
AI KATAOKA ◽  
D. GLENN BLACK ◽  
CARLA D. NAPIER ◽  
RICHARD PODOLAK ◽  
...  

The objective of this study was to obtain dry inocula of Salmonella Tennessee and Enterococcus faecium, a surrogate for thermal inactivation of Salmonella in low-moisture foods, and to compare their thermal resistance and stability over time in terms of survival. Two methods of cell growth were compared: cells harvested from a lawn on tryptic soy agar (TSA-cells) and from tryptic soy broth (TSB-cells). Concentrated cultures of each organism were inoculated onto talc powder, incubated at 35°C for 24 h, and dried for additional 24 h at room temperature (23 ± 2°C) to achieve a final water activity of ≤0.55 before sieving. Cell reductions of Salmonella and E. faecium during the drying process were between 0.14 and 0.96 log CFU/g, depending on growth method used. There was no difference between microbial counts at days 1 and 30. Heat resistance of the dry inoculum on talc inoculated into a model peanut paste (50% fat and 0.6 water activity) was determined after 1 and 30 days of preparation, using thermal death time tests conducted at 85°C. For Salmonella, there was no significant difference between the thermal resistance (D85°C) for the TSB-cells and TSA-cells (e.g. day 1 cells D85°C = 1.05 and 1.07 min, respectively), and there was no significant difference in D85°C between dry inocula on talc used either 1 or 30 days after preparation (P &gt; 0.05). However, the use the dry inocula of E. faecium yielded different results: the TSB-grown cells had a significantly (P &lt; 0.05) greater heat resistance than TSA-grown cells (e.g. D85°C for TSB-cells = 3.42 min versus 2.60 min for TSA-cells). E. faecium had significantly (P &lt; 0.05) greater heat resistance than Salmonella Tennessee regardless what cell type was used for dry inoculum preparation; therefore, it proved to be a conservative but appropriate surrogate for thermal inactivation of Salmonella in low-moisture food matrices under the tested conditions.


2016 ◽  
Vol 79 (12) ◽  
pp. 2058-2065 ◽  
Author(s):  
DANIELLE F. SMITH ◽  
IAN M. HILDEBRANDT ◽  
KAITLYN E. CASULLI ◽  
KIRK D. DOLAN ◽  
BRADLEY P. MARKS

ABSTRACT Salmonella continues to be a problem associated with low-moisture foods, particularly given enhanced thermal resistance at lower water activity (aw). However, there is a scarcity of thermal inactivation models accounting for the effect of aw. The objective of this study was to test multiple secondary models for the effect of product (wheat flour) aw on Salmonella enterica Enteritidis phage type 30 thermal resistance. A full-factorial experimental design included three temperatures (75, 80, and 85°C) and four aw values (~0.30, 0.45, 0.60, and 0.70). Prior to isothermal treatment, sample aw was achieved by equilibrating samples in a humidity-controlled conditioning chamber. Two primary models (log linear and Weibull type) and three secondary models (second-order response surface, modified Bigelow type, and combined effects) were evaluated using the corrected Akaike information criterion and root mean squared errors. Statistical analyses of the primary models favored the log-linear model. Incorporating the three secondary models into the log-linear primary model yielded root mean squared errors of 2.1, 0.78, and 0.96 log CFU/g and corrected Akaike information criterion values of 460, −145, and −19 for the response surface, modified Bigelow, and combined-effects models, respectively. The modified Bigelow-type model, which exponentially scaled both temperature and aw effects on thermal inactivation rates, predicted Salmonella lethality significantly better (P &lt; 0.05) than did the other secondary models examined. Overall, aw is a critical factor affecting thermal inactivation of Salmonella in low-moisture products and should be appropriately included in thermal inactivation models for these types of systems.


1956 ◽  
Vol 19 (8) ◽  
pp. 209-212 ◽  
Author(s):  
R. C. Webster ◽  
W. B. Esselen

Thermal death times of food poisoning types of organisms as represented by Salmonella enteritidis, Micrococcus pyogenes var. aureus, and Streptococcus faecalis in poultry stufing were investigated. The thermal destruction characteristics of these organisms are described in terms of z and F140 values. Streptococcus faecalis was considerably more heat resistant than the other two organisms studies. The data obtained indicate that roasting procedures for stuffed poultry, based on the attainment of a center stuffing temperature of 165°F., should be adequate to destroy such organisms if present in the stuffing.


2018 ◽  
Vol 81 (4) ◽  
pp. 606-613 ◽  
Author(s):  
Pichamon Limcharoenchat ◽  
SARAH E. BUCHHOLZ ◽  
MICHAEL K. JAMES ◽  
NICOLE O. HALL ◽  
ELLIOT T. RYSER ◽  
...  

ABSTRACT Inoculation methods in pathogen inactivation studies ideally represent conditions that might occur in real-world scenarios. Surface contamination in or on low-moisture foods affects Salmonella thermal resistance, which is critically important for process validation applications. The objective of this study was to quantify the effect of inoculation protocol on the thermal resistance of Salmonella Enteritidis PT 30 in fabricated low-moisture foods. Almond meal, almond butter, wheat meal, wheat flour, and date paste were inoculated via prefabrication and postfabrication protocols. In the prefabrication protocol, kernels and fruits were surface inoculated and equilibrated to a target water activity (aw) (0.40 for almond and wheat products, 0.45 for date products) before fabricating meal, butter, flour, or paste and then reequilibrating the samples to the target aw. In the postfabrication protocol, meal, butter, flour, and paste were fabricated before inoculation and equilibration. All inoculated and equilibrated samples were subjected to isothermal treatment (80°C), pulled sequentially during processing, cooled, serially diluted, and plated to enumerate survivors. Log-linear and Weibull-type models were fit to the Salmonella survivor data and were compared via the corrected Akaike information criterion. Pre- and postfabrication protocols resulted in significant differences (P &lt; 0.05) in Salmonella thermal resistance in all products. Overall, the thermal resistance of Salmonella Enteritidis PT 30 in almond products was greater (P &lt; 0.05) than in wheat products, which was also greater (P &lt; 0.05) than in date paste. Additionally, Salmonella was more thermally resistant in almond products and date paste when inoculated pre- rather than postfabrication; however, the opposite was true for wheat products. These results indicate that the means of inoculation can significantly affect thermal resistance of Salmonella in low-moisture foods.


Sign in / Sign up

Export Citation Format

Share Document