Harvest maturity related changes in the cold-induced activation of 1-aminocyclopropane-1-carboxylic acid metabolism in Granny Smith apples / Efecto del estado de madurez sobre la activación por frío del metabolismo del ácido 1-aminociclopropano-1-carboxílico en manzanas Granny Smith

1999 ◽  
Vol 5 (3) ◽  
pp. 223-228 ◽  
Author(s):  
C. Larrigaudiere ◽  
I. Recasens ◽  
J. Graell ◽  
M. Vendrell

Changes in 1-aminocyclopropane-1-carboxylic acid metabolism in apples ( Malus domestica Borkh cv Granny Smith) were studied in relation to cold storage. Emphasis was given to the differential re sponsiveness of fruits to cold treatment as a function of stage of maturity at harvest. Fruits were held at 1 or 20 °C for 30 days, respectively, or exposed to 1 °C for 10 days and then storaged at 20 °C for up to 30 days. Fruits at 20 °C showed typical climacteric behavior. Differences at 1 °C between maturity stages in ethylene production and ACC oxidase activity were abolished, which showed that cold treatment is an important inducer of climacteric rise in preclimacteric Granny Smith apples. At 1 °C, ethylene production was lower than at 20 °C and the maxima in production were similar for all the stages of maturity, but took place at different times which corresponded exactly to the initial differ ences in harvest dates. After the transfer to 20 °C, fruits exhibited similar behavior as regards ethyl ene production, ACC oxidase activity, and ACC and MACC levels in relation to a harmonization process which is discussed in this study.

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 825G-826 ◽  
Author(s):  
P. Perkins-Veazie ◽  
J. K. Collins ◽  
B Cartwright

To determine whether ethylene production was related to locular tissue breakdown in watermelon, plugs from ripe `Jubilee', `Black Diamond', `Tiger Baby', `Mirage', and `King of Hearts' were taken from the skin (epidermis and hypoderm), rind (hypoderm and mesocarp), and placenta (locular and heart) tissues. ACC oxidase activity was <0.05 nmol·g–1·h–1 in locule and heart locations for all cultivars. Skin tissue had the highest activity, ranging from 0. 1 8 for `Jubilee' to 0.5 to 0.62 nmol·g–1·h–1 for the other four cultivars. ACC (1-aminocyclopropane-1-carboxylic acid) and ACC oxidase activity were measured in unripe, ripe, and overripe `Jubilee' melons. ACC oxidase activity from skin tissue was lowest in unripe (0.05 nmol·g–1·h–1) and highest in overripe (0.13 nmol·g–1·h–1) melons, and was 0.05 nmol·g–1·h–1 or less in all other tissues. Free ACC was highest in the skin tissue (1.3 nmol·g–1·h–1), but there was no difference in ACC content with stage of ripeness for any tissue. Results indicate that ethylene may be transported from the outer skin and rind tissues to locular areas and that wounding of the skin tissue could lead to deleterious ethylene production.


1999 ◽  
Vol 26 (2) ◽  
pp. 179 ◽  
Author(s):  
Maria X. Henzi ◽  
David L. McNeil ◽  
Mary C. Christey ◽  
Ross E. Lill

In this paper 11 transgenic broccoli (Brassica oleracea L. var. italica) lines containing a tomato antisense 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene from pTOM13 were evaluated. Changes in respiration, ethylene production and ACC oxidase activity were studied in mature flowers. Averaged across all ACC oxidase transgenic lines, there was an initial increase followed by a substantial decrease in ethylene production compared with the controls. Of the 11 transgenic lines, 10 lines showed a significant reduction in fethylene production relative to the controls from 50 h after harvest. Green Beauty flowers showed a significant reduction in respiration between the transgenics and control and demonstrated how ethylene levels could control the stable, or climacteric-like increase in respiration. ACC oxidase activity was higher in transgenic plants, consistent with the initially higher ethylene production. ACC oxidase activity did not, however, reflect the increase in ethylene production found after 50 h for the controls. These results suggest that two ethylene production systems may operate with only the second being inhibited by the antisense ACC oxidase used and that the later system was not detected by the ACC oxidase assay used. The results do show that post-harvest ethylene synthesis and therefore possibly broccoli senescence can be regulated by using an antisense ACC oxidase gene.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 995
Author(s):  
Mohammad Darvish ◽  
Habib Shirzad ◽  
Mohammadreza Asghari ◽  
Parviz Noruzi ◽  
Abolfazl Alirezalu ◽  
...  

Ethylene is the most important factor playing roles in senescence and deterioration of harvested crops including cut flowers. Brassinosteroids (BRs), as natural phytohormones, have been reported to differently modulate ethylene production and related senescence processes in different crops. This study was carried out to determine the effects of different levels of 24-epibrassinolide (EBL) on ACC oxidase enzyme activity, the final enzyme in ethylene biosynthesis pathway, vase life, and senescence rate in lisianthus cut flowers. Harvested flowers were treated with EBL (at 0, 3, 6, and 9 µmol/L) and kept at 25 °C for 15 days. The ACC oxidase activity, water absorption, malondialdehyde (MDA) production and vase solution absorption rates, chlorophyll and anthocyanin contents, and the vase life of the flowers were evaluated during and at the end of storage. EBL at 3 µmol/L significantly (p ≤ 0.01) enhanced the flower vase life by decreasing the ACC oxidase activity, MDA production and senescence rates, and enhancing chlorophyll and anthocyanin biosynthesis and accumulation, relative water content, and vase solution absorption rates. By increasing the concentration, EBL negatively affected the flower vase life and postharvest quality probably via enhancing the ACC oxidase enzyme activity and subsequent ethylene production. EBL at 6 and 9 µmol/L and in a concentration dependent manner, enhanced the ACC oxidase activity and MDA production rate and decreased chlorophyll and anthocyanin accumulation and water absorption rate. The results indicate that the effects of brassinosteroids on ethylene production and physiology of lisianthus cut flowers is highly dose dependent.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 571d-571
Author(s):  
Jean-Claude Pech

We have generated transgenic Cantaloupe Charentais melons expressing an ACC oxidase antisense gene in which ethylene production was reduced to less than 1% as compared to control untransformed fruits. As a consequence, some aspects of the ripening process were strongly inhibited (aroma volatiles production, chlorophyll and cell wall degradation, pigmentation of the rind, activation of peduncular abscission zone) while others remained unchanged (coloration of the flesh), allowing us to distinguish between ethylene-dependent and ethylene-independent pathways. Some postharvest characteristics of the transgenic fruit are described in terms of expression of ripening-related genes, respiratory behavior, and biochemical composition. Data also are presented showing that exogenous ethylene treatments could reverse the antisense phenotype.


2003 ◽  
Vol 15 (3) ◽  
pp. 145-148 ◽  
Author(s):  
Renar João Bender ◽  
Eduardo Seibert ◽  
Jeffrey K. Brecht

With the use of ethylene dibromide for mango disinfestation being ruled out, vapor heat or hot water treatments are the only alternatives for quarantine treatments of mangoes. Physical treatments such as heat treatments have been implicated in higher incidence of physiological disorders and enhancement of ripening processes. Therefore, the objective of the present work was to determine the effects of hot water treatments on ethylene production and on the in vitro activity of ACC oxidase. Cv. Keitt mangoes were immersed for 3 min in hot water at 53 °C or 90 min in water at 46 °C. Immediately after the treatments, some of the mangoes were analyzed for ACC oxidase activity and others were stored to be analyzed after 4 days at 12 °C. There was a significant increase in the ACC oxidase activity just after the hot water treatments. After 4 days, only the mangoes treated for 90 min maintained high ethylene production and ACC oxidase activity. Tissue from the outer layers of the mesocarp had higher enzyme activity compared to tissues from the innermost layers of the mesocarp of heat-treated mangoes.


1999 ◽  
Vol 26 (3) ◽  
pp. 201 ◽  
Author(s):  
M. T. Muñoz ◽  
P. Aguado ◽  
N. Ortega ◽  
M. I. Escribano ◽  
C. Merodio

In this study we focused on the effect of high CO2 level (20%) on ethylene and polyamine biosynthesis in cherimoya (Annona cherimola Mill.) fruits stored at ripening (20˚C) and chilling (6˚C) temperatures. At ripening temperature, CO2 inhibited ethylene production, but 1-aminocyclopropane-1- carboxylate (ACC) oxidase activity was similar to that in ripe control fruits. CO2 treatment led to a decline in putrescine (Put) and a major accumulation of spermidine (Spd) and spermine (Spm) without any effect on arginine decarboxylase (ADC) activity. These results confirm the preferential transformation of Put to Spd and Spm in CO2 -treated fruits. At chilling temperature, the increase in ACC oxidase activity was inhibited and the Vmax of ADC increased. A combination of chilling temperature storage and high CO2 level led to suppression of basal ethylene production while ACC oxidase activity remained unchanged. In addition, fruits held at these conditions had higher polyamine titres than the untreated control. We propose that, in CO2 -treated fruits, the absence of autocatalytic or basal ethylene production, depending on the temperature, may be due to deviation of the S-adenosylmethionine (SAM) pool towards polyamine synthesis, primarily Spd and Spm.


HortScience ◽  
1998 ◽  
Vol 33 (1) ◽  
pp. 103-104
Author(s):  
Hirofumi Terai ◽  
Hironobu Tsuchida ◽  
Masashi Mizuno ◽  
Noriyoshi Matsui

Tomato fruit were given a short-term (24 h) high CO2 (80%) or N2 (100%) treatment and then transferred to air storage at 20 °C. The CO2 treatment stimulated ACC oxidase activity and ethylene production, whereas the N2 treatment increased ACC content but did not increase ethylene production. Both CO2, and N2 treatments delayed ripening for one day, but fruit ripened normally. Although short-term 80% CO2, had a stimulating effect, and 100 % N2 had no effect on ethylene production, ripening was delayed slightly by both treatments. Chemical name used: 1-aminocyclopropane-1-carboxylic acid (ACC).


Sign in / Sign up

Export Citation Format

Share Document