Association between Polygenic Risk Scores for ADHD and Asthma: A Birth Cohort Investigation

2021 ◽  
pp. 108705472110201
Author(s):  
Douglas Teixeira Leffa ◽  
Bernardo Horta ◽  
Fernando C. Barros ◽  
Ana M. B. Menezes ◽  
Thais Martins-Silva ◽  
...  

Objective: Shared genetic mechanisms have been hypothesized to explain the comorbidity between ADHD and asthma. To evaluate their genetic overlap, we relied on data from the 1982 Pelotas birth cohort to test the association between polygenic risk scores (PRSs) for ADHD (ADHD-PRSs) and asthma, and PRSs for asthma (asthma-PRSs) and ADHD. Method: We analyzed data collected at birth, 2, 22, and 30 years from 3,574 individuals. Results: Subjects with ADHD had increased risk of having asthma (OR 1.92, 95% CI 1.01–3.66). The association was stronger for females. Our results showed no evidence of association between ADHD-PRSs and asthma or asthma-PRSs and ADHD. However, an exploratory analysis suggested that adult ADHD might be genetically associated with asthma. Conclusion: Our results do not support a shared genetic background between both conditions. Findings should be viewed in light of important limitations, particularly the sample size and the self-reported asthma diagnosis. Studies in larger datasets are required to better explore the genetic overlap between adult ADHD and asthma.

2019 ◽  
Vol 3 ◽  
pp. 11 ◽  
Author(s):  
Toni-Kim Clarke ◽  
Yanni Zeng ◽  
Lauren Navrady ◽  
Charley Xia ◽  
Chris Haley ◽  
...  

Background: Stressful life events (SLEs) and neuroticism are risk factors for major depressive disorder (MDD). However, SLEs and neuroticism are heritable and genetic risk for SLEs is associated with risk for MDD. We sought to investigate the genetic and environmental contributions to SLEs in a family-based sample, and quantify genetic overlap with MDD and neuroticism. Methods: A subset of Generation Scotland: the Scottish Family Health Study (GS), consisting of 9618 individuals with information on MDD, past 6 month SLEs, neuroticism and genome-wide genotype data was used in the present study. We estimated the heritability of SLEs using GCTA software. The environmental contribution to SLEs was assessed by modelling familial, couple and sibling components. Using polygenic risk scores (PRS) and LD score regression (LDSC) we analysed the genetic overlap between MDD, neuroticism and SLEs. Results: Past 6-month life events were positively associated with lifetime MDD status (β=0.21, r2=1.1%, p=2.5 x 10-25) and neuroticism (β =0.13, r2=1.9%, p=1.04 x 10-37) at the phenotypic level.  Common SNPs explained 8% of the phenotypic variance in personal life events (those directly affecting the individual) (S.E.=0.03, p= 9 x 10-4). A significant effect of couple environment was detected accounting for 13% (S.E.=0.03, p=0.016) of the phenotypic variation in SLEs. PRS analyses found that reporting more SLEs was associated with a higher polygenic risk for MDD (β =0.05, r2=0.3%, p=3 x 10-5), but not a higher polygenic risk for neuroticism. LDSC showed a significant genetic correlation between SLEs and both MDD (rG=0.33, S.E.=0.08 ) and neuroticism (rG=0.15, S.E.=0.07). Conclusions: These findings suggest that SLEs should not be regarded solely as environmental risk factors for MDD as they are partially heritable and this heritability is shared with risk for MDD and neuroticism. Further work is needed to determine the causal direction and source of these associations.


2020 ◽  
Author(s):  
Dennis van der Meer ◽  
Alexey A Shadrin ◽  
Kevin O'Connell ◽  
Francesco Bettella ◽  
Srdjan Djurovic ◽  
...  

Schizophrenia is a complex, polygenic disorder associated with subtle, distributed abnormalities in brain morphology. Here, we report large genetic overlap between schizophrenia and brain morphology, which enabled derivation of polygenic risk scores more predictive of schizophrenia diagnosis than the current state-of-the-art. Our results illustrate the potential of exploiting genetic overlap in imaging genetics studies, and how pleiotropy-enriched risk scores may improve prediction of polygenic brain disorders.


Neurogenetics ◽  
2020 ◽  
Vol 21 (3) ◽  
pp. 205-215
Author(s):  
Roel R. I. van Reij ◽  
Jan Willem Voncken ◽  
Elbert A. J. Joosten ◽  
Nynke J. van den Hoogen

2020 ◽  
Vol 29 (8) ◽  
pp. 1388-1395
Author(s):  
Laurence J Howe ◽  
Frank Dudbridge ◽  
Amand F Schmidt ◽  
Chris Finan ◽  
Spiros Denaxas ◽  
...  

Abstract Background There is growing evidence that polygenic risk scores (PRSs) can identify individuals with elevated lifetime risk of coronary artery disease (CAD). Whether they can also be used to stratify the risk of subsequent events among those surviving a first CAD event remain uncertain, with possible biological differences between CAD onset and progression, and the potential for index event bias. Methods Using two baseline subsamples of UK Biobank: prevalent CAD cases (N = 10 287) and individuals without CAD (N = 393 108), we evaluated associations between a CAD PRS and incident cardiovascular and fatal outcomes. Results A 1 SD higher PRS was associated with an increased risk of incident myocardial infarction (MI) in participants without CAD (OR 1.33; 95% CI 1.29, 1.38), but the effect estimate was markedly attenuated in those with prevalent CAD (OR 1.15; 95% CI 1.06, 1.25) and heterogeneity P = 0.0012. Additionally, among prevalent CAD cases, we found an evidence of an inverse association between the CAD PRS and risk of all-cause death (OR 0.91; 95% CI 0.85, 0.98) compared with those without CAD (OR 1.01; 95% CI 0.99, 1.03) and heterogeneity P = 0.0041. A similar inverse association was found for ischaemic stroke [prevalent CAD (OR 0.78; 95% CI 0.67, 0.90); without CAD (OR 1.09; 95% CI 1.04, 1.15), heterogeneity P < 0.001]. Conclusions Bias induced by case stratification and survival into UK Biobank may distort the associations of PRS derived from case-control studies or populations initially free of disease. Differentiating between effects of possible biases and genuine biological heterogeneity is a major challenge in disease progression research.


2021 ◽  
Vol 15 ◽  
Author(s):  
Aashita Batra ◽  
Lawrence M. Chen ◽  
Zihan Wang ◽  
Carine Parent ◽  
Irina Pokhvisneva ◽  
...  

While the co-morbidity between metabolic and psychiatric behaviors is well-established, the mechanisms are poorly understood, and exposure to early life adversity (ELA) is a common developmental risk factor. ELA is associated with altered insulin sensitivity and poor behavioral inhibition throughout life, which seems to contribute to the development of metabolic and psychiatric disturbances in the long term. We hypothesize that a genetic background associated with higher fasting insulin interacts with ELA to influence the development of executive functions (e.g., impulsivity in young children). We calculated the polygenic risk scores (PRSs) from the genome-wide association study (GWAS) of fasting insulin at different thresholds and identified the subset of single nucleotide polymorphisms (SNPs) that best predicted peripheral insulin levels in children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort [N = 467; pt– initial = 0.24 (10,296 SNPs), pt– refined = 0.05 (57 SNPs)]. We then calculated the refined PRS (rPRS) for fasting insulin at this specific threshold in the children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort and investigated its interaction effect with adversity on an impulsivity task applied at 36 months. We found a significant effect of interaction between fasting insulin rPRS and adversity exposure predicting impulsivity measured by the Snack Delay Task at 36 months [β = −0.329, p = 0.024], such that higher PRS [β = −0.551, p = 0.009] was linked to more impulsivity in individuals exposed to more adversity. Enrichment analysis (MetaCoreTM) of the SNPs that compose the fasting insulin rPRS at this threshold was significant for certain nervous system development processes including dopamine D2 receptor signaling. Additional enrichment analysis (FUMA) of the genes mapped from the SNPs in the fasting insulin rPRS showed enrichment with the accelerated cognitive decline GWAS. Therefore, the genetic background associated with risk for adult higher fasting insulin moderates the impact of early adversity on childhood impulsivity.


2021 ◽  
Author(s):  
Nuzulul Kurniansyah ◽  
Matthew O Goodman ◽  
Tanika Kelly ◽  
Tali Elfassi ◽  
Kerri Wiggins ◽  
...  

Background: We used summary statistics from previously-published GWAS of systolic and diastolic BP and of hypertension to construct Polygenic Risk Scores (PRS) to predict hypertension across diverse populations. Methods: We used 10,314 participants of diverse ancestry from BioMe to train trait-specific PRS. We implemented a novel approach to select one of multiple potential PRS based on the same GWAS, by optimizing the coefficient of variation across estimated PRS effect sizes in independent subsets of the training dataset. We combined the 3 selected trait-specific PRS as their unweighted sum, called "PRSsum". We evaluated PRS associations in an independent dataset of 39,035 individuals from eight cohort studies, to select the final, multi-ethnic, HTN-PRS. We estimated its association with prevalent and incident hypertension 4-6 years later. We studied hypertension development within HTN-PRS strata in a longitudinal, six-visit, longitudinal dataset of 3,087 self-identified Black and White participants from the CARDIA study. Finally, we evaluated the HTN-PRS association with clinical outcomes in 40,201 individuals from the MGB Biobank. Results: Compared to other race/ethnic backgrounds, African-Americans had higher average values of the HTN-PRS. The HTN-PRS was associated with prevalent hypertension (OR=2.10, 95% CI [1.99, 2.21], per one standard deviation (SD) of the PRS) across all participants, and in each race/ethnic background, with heterogeneity by background (p-value < 1.0x10-4). The lowest estimated effect size was in African Americans (OR=1.53, 95% CI [1.38, 1.69]). The HTN-PRS was associated with new onset hypertension among individuals with normal (respectively, elevated) BP at baseline: OR=1.71, 95% CI [1.55, 1.91] (OR=1.48, 95% CI [1.27, 1.71]). Association was further observed in age-stratified analysis. In CARDIA, Black participants with high HTN-PRS percentiles developed hypertension earlier than White participants with high HTN-PRS percentiles. The HTN-PRS was significantly associated with increased risk of coronary artery disease (OR=1.12), ischemic stroke (OR=1.15), type 2 diabetes (OR=1.19), and chronic kidney disease (OR=1.12), in the MGB Biobank. Conclusions: The multi-ethnic HTN-PRS is associated with both prevalent and incident hypertension at 4-6 years of follow up across adulthood and is associated with clinical outcomes.


2018 ◽  
Vol 3 ◽  
pp. 11 ◽  
Author(s):  
Toni-Kim Clarke ◽  
Yanni Zeng ◽  
Lauren Navrady ◽  
Charley Xia ◽  
Chris Haley ◽  
...  

Background: Stressful life events (SLEs) and neuroticism are risk factors for major depressive disorder (MDD). However, SLEs and neuroticism are heritable and genetic risk for SLEs is correlated with risk for MDD. We sought to investigate the genetic and environmental contributions to SLEs in a family-based sample, and quantify genetic overlap with MDD and neuroticism. Methods: A subset of Generation Scotland: the Scottish Family Health Study (GS), consisting of 9618 individuals with information on MDD, past 6 month SLEs, neuroticism and genome-wide genotype data was used in the present study. We estimated the heritability of SLEs using GCTA software. The environmental contribution to SLEs was assessed by modelling familial, couple and sibling components. Using polygenic risk scores (PRS) and LD score regression (LDSC) we analysed the genetic overlap between MDD, neuroticism and SLEs. Results: Past 6-month life events were positively correlated with lifetime MDD status (β=0.21, r2=1.1%, p=2.5 x 10-25) and neuroticism (β =0.13, r2=1.9%, p=1.04 x 10-37) at the phenotypic level.  Common SNPs explained 8% of the phenotypic variance in personal life events (those directly affecting the individual) (S.E.=0.03, p= 9 x 10-4). A significant effect of couple environment was detected accounting for 13% (S.E.=0.03, p=0.016) of the phenotypic variation in SLEs. PRS analyses found that reporting more SLEs was associated with a higher polygenic risk for MDD (β =0.05, r2=0.3%, p=3 x 10-5), but not a higher polygenic risk for neuroticism. LDSC showed a significant genetic correlation between SLEs and both MDD (rG=0.33, S.E.=0.08 ) and neuroticism (rG=0.15, S.E.=0.07). Conclusions: These findings suggest that SLEs should not be regarded solely as environmental risk factors for MDD as they are partially heritable and this heritability is shared with risk for MDD and neuroticism. Further work is needed to determine the causal direction and source of these associations.


2021 ◽  
pp. 1-13
Author(s):  
Hongliang Liu ◽  
Michael Lutz ◽  
Sheng Luo ◽  

Background: Mild cognitive impairment (MCI) is a heterogeneous condition and MCI patients are at increased risk of progression to dementia due to Alzheimer’s disease (AD). Objective: In this study, we aim to evaluate the associations between polygenic risk scores (PRSs) and 1) time to AD progression from MCI, 2) changes in longitudinal cognitive impairment, and 3) biomarkers from cerebrospinal fluid and imaging. Methods: We constructed PRS by using 40 independent non-APOE SNPs from well-replicated AD GWASs and tested its association with the progression time from MCI to AD by using 767 MCI patients from the ADNI study and 1373 patients from the NACC study. PRSs calculated with other methods were also computed. Results: We found that the PRS constructed with SNPs that reached genome-wide significance predicted the progression from MCI to AD (beta = 0.182, se = 0.061, p = 0.003) after adjusting for the demographic and clinical variables. This association was replicated in the NACC dataset (beta = 0.094, se = 0.037, p = 0.009). Further analyses revealed that PRS was associated with the increased ADAS-Cog11/ADAS-Cog13/ADASQ4 scores, tau/ptau levels, and cortical amyloid burdens (PIB and AV45), but decreased hippocampus and entorhinal cortex volumes (p <  0.05). Mediation analysis showed that the effect of PRS on the increased risk of AD may be mediated by Aβ 42 (beta = 0.056, SE = 0.026, p = 0.036). Conclusion: Our findings suggest that PRS can be useful for the prediction of time to AD and other clinical changes after the diagnosis of MCI.


Sign in / Sign up

Export Citation Format

Share Document