scholarly journals Screening Mutant Libraries of Fungal Laccases in the Presence of Organic Solvents

2005 ◽  
Vol 10 (6) ◽  
pp. 624-631 ◽  
Author(s):  
Miguel Alcalde ◽  
Thomas Bulter ◽  
Miren Zumárraga ◽  
Humberto García-Arellano ◽  
Mario Mencía ◽  
...  

Reliable screening methods are being demanded by biocatalysts’ engineers, especially when some features such as activity or stability are targets to improve under nonnatural conditions (i.e., in the presence of organic solvents). The current work describes a protocol for the design of a fungal laccase—expressed in Saccharomyces cerevisiae—highly active in organic cosolvents. A high-throughput screening assay based on ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) oxidation was validated. The stability of the ABTS radical cation was not significantly altered in the presence of acetonitrile, ethanol, or DMSO. With a coefficient of variance below 10% and a sensitivity limit of 15 pg laccase/μL, the assay was reproducible and sensitive. The expression system of Myceliophthora thermophila laccase variant T2 in S. cerevisiae was highly dependent on the presence of Cu2+. Copper concentration was limited up to 10 μM CuSO4 where expression levels (~14-18 mg/L) were acceptable without compromising the reliability of the assay. A mutant library was created by error-prone PCR with 1.1 to 3.5 mutations per kb. After only 1 generation of directed evolution, mutant 6C9 displayed about 3.5-fold higher activities than parent type in the presence of 20% acetonitrile or 30% ethanol. The method provided here should be generally useful to improve the activity of other redox enzymes in mixtures of water/cosolvents.

Author(s):  
Cecilia Eydoux ◽  
Veronique Fattorini ◽  
Ashleigh Shannon ◽  
Thi-Tuyet-Nhung Le ◽  
Bruno Didier ◽  
...  

AbstractThe Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96% aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1,520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug repositioning or novel drug discovery against the SARS-CoV-2.Principle of SARS-CoV RNA synthesis detection by a fluorescence-based high throughput screening assayHighlights- A new SARS-CoV non radioactive RNA polymerase assay is described- The robotized assay is suitable to identify RdRp inhibitors based on HTS


2019 ◽  
Vol 366 (Supplement_1) ◽  
pp. i42-i48
Author(s):  
Vera Kuzina Poulsen ◽  
Patrick Derkx ◽  
Gunnar Oregaard

ABSTRACT In the food industry, lactic acid bacteria (LAB) are used in dairy fermentations, extending the shelf life by lowering the pH and also affecting taste and texture of the fermented milk. The texture of fermented milk is an important quality parameter, affecting consumer acceptance. Finding LAB providing desired texture of a product is time consuming and laborious when using standard methods for measuring texture, e.g. rheology measurements. Screening of 986 Lactococcus lactis strains resulted in few strains with the ability to enhance texture, demonstrating the necessity of implementation of high-throughput screening methods. A high-throughput screening assay was developed, combining small-scale 96-well microtiter plates and pressure measurements during liquid handling, e.g. aspiration, to find strains that give good texture in fermented milk. Only about 1% of the strains were found to enhance milk texture. Two of the texturing strains belong to L. lactis subsp. lactis, which are the first texturing strains from this subsp. reported. Mining for eps gene clusters responsible for exocellular polysaccharide production was performed, as polysaccharide production can contribute positively to fermented milk texture. Comparative genomics approach revealed four types of texturing L. lactis strains with diverse eps gene clusters.


2018 ◽  
Vol 20 (9) ◽  
pp. 804-819 ◽  
Author(s):  
Mohamed Boudjelal ◽  
Ana Maria Ruiz-Avendano ◽  
Gonzalo Colmenarejo ◽  
Sergio A. Senar-Sancho ◽  
Ashley Barnes ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Kalsum ◽  
Blanka Andersson ◽  
Jyotirmoy Das ◽  
Thomas Schön ◽  
Maria Lerm

Abstract Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


2021 ◽  
pp. 247255522110006
Author(s):  
Lesley-Anne Pearson ◽  
Charlotte J. Green ◽  
De Lin ◽  
Alain-Pierre Petit ◽  
David W. Gray ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5′ end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3′-5′ exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


2021 ◽  
Vol 22 (3) ◽  
pp. 1231
Author(s):  
Ihab M. Abdallah ◽  
Kamal M. Al-Shami ◽  
Euitaek Yang ◽  
Amal Kaddoumi

In Alzheimer’s disease (AD), several studies have reported blood-brain barrier (BBB) breakdown with compromised function. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are transport proteins localized at the BBB luminal membrane and play an important role in the clearance of amyloid-β (Aβ). The purpose of this study was to investigate the effect of pharmacological inhibition of Aβ efflux transporters on BBB function and Aβ accumulation and related pathology. Recently, we have developed an in vitro high-throughput screening assay to screen for compounds that modulate the integrity of a cell-based BBB model, which identified elacridar as a disruptor of the monolayer integrity. Elacridar, an investigational compound known for its P-gp and BCRP inhibitory effect and widely used in cancer research. Therefore, it was used as a model compound for further evaluation in a mouse model of AD, namely TgSwDI. TgSwDI mouse is also used as a model for cerebral amyloid angiopathy (CAA). Results showed that P-gp and BCRP inhibition by elacridar disrupted the BBB integrity as measured by increased IgG extravasation and reduced expression of tight junction proteins, increased amyloid deposition due to P-gp, and BCRP downregulation and receptor for advanced glycation end products (RAGE) upregulation, increased CAA and astrogliosis. Further studies revealed the effect was mediated by activation of NF-κB pathway. In conclusion, results suggest that BBB disruption by inhibiting P-gp and BCRP exacerbates AD pathology in a mouse model of AD, and indicate that therapeutic drugs that inhibit P-gp and BCRP could increase the risk for AD.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 808
Author(s):  
Maurice Steenhuis ◽  
Corinne M. ten Hagen-Jongman ◽  
Peter van Ulsen ◽  
Joen Luirink

The structural integrity of the Gram-negative cell envelope is guarded by several stress responses, such as the σE, Cpx and Rcs systems. Here, we report on assays that monitor these responses in E. coli upon addition of antibacterial compounds. Interestingly, compromised peptidoglycan synthesis, outer membrane biogenesis and LPS integrity predominantly activated the Rcs response, which we developed into a robust HTS (high-throughput screening) assay that is suited for phenotypic compound screening. Furthermore, by interrogating all three cell envelope stress reporters, and a reporter for the cytosolic heat-shock response as control, we found that inhibitors of specific envelope targets induce stress reporter profiles that are distinct in quality, amplitude and kinetics. Finally, we show that by using a host strain with a more permeable outer membrane, large-scaffold antibiotics can also be identified by the reporter assays. Together, the data suggest that stress profiling is a useful first filter for HTS aimed at inhibitors of cell envelope processes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129234 ◽  
Author(s):  
Lauren Forbes ◽  
Katherine Ebsworth-Mojica ◽  
Louis DiDone ◽  
Shao-Gang Li ◽  
Joel S. Freundlich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document