scholarly journals Small-Molecule Inhibitors of the Protein Methyltransferase SET7/9 Identified in a High-Throughput Screen

2012 ◽  
Vol 17 (8) ◽  
pp. 1102-1109 ◽  
Author(s):  
Nicola-Jane Francis ◽  
Martin Rowlands ◽  
Paul Workman ◽  
Keith Jones ◽  
Wynne Aherne

Aberrant expression of chromatin-modifying enzymes (CMEs) is associated with a range of human diseases, including cancer. CMEs are now an important target area in drug discovery. Although the role that histone and protein (lysine) methyltransferases (PMTs) play in the regulation of transcription and cell growth is increasingly recognized, few small-molecule inhibitors of this class of enzyme have been reported. Here we describe an assay suitable for primary compound screening for the identification of PMT inhibitors. The assay followed the methylation of histones in the presence of the PMT SET7/9 and the radioactive cofactor S-adenosyl-methionine using scintillating microplates (FlashPlate) and was used to screen approximately 65 000 compounds (% coefficient of variation = 10%; Z′ = 0.6). The hits identified from a library of more than 63 000 diverse small molecules included a series of rhodanine compounds with micromolar activity. A screen of the National CancerInstitute Diversity Set (2000 compounds) identified an orsein derivative that inhibited SET7/9 (~20 µM) and showed modest growth inhibition associated with the expected cellular phenotype of reduced histone methylation in a human tumor cell line. The assay represents a useful tool for the identification of inhibitors of PMT activity.

2008 ◽  
Vol 26 (25) ◽  
pp. 4180-4188 ◽  
Author(s):  
Benjamin D. Zeitlin ◽  
Isaac J. Zeitlin ◽  
Jacques E. Nör

The specific targeting of diseases, particularly cancer, is a primary aim in drug development, as specificity reduces unwelcome effects on healthy tissue and increases drug efficacy at the target site. Drug specificity can be increased by improving the delivery system or by selecting drugs with affinity for a molecular ligand specific to the disease state. The role of the prosurvival Bcl-2 protein in maintaining the normal balance between apoptosis and cellular survival has been recognized for more than a decade. Bcl-2 is vital during development, much less so in adults. It has also been noted that some cancers evade apoptosis and obtain a survival advantage through aberrant expression of Bcl-2. The new and remarkably diverse class of drugs, small-molecule inhibitors of Bcl-2 (molecular weight approximately 400 to 800 Daltons), is examined herein. We present the activities of these compounds along with clinical observations, where available. The effects of Bcl-2 inhibition on attenuation of tumor cell growth are discussed, as are studies revealing the potential for Bcl-2 inhibitors as antiangiogenic agents. Despite an enormous body of work published for the Bcl-2 family of proteins, we are still learning exactly how this group of molecules interacts and indeed what they do. The small-molecule inhibitors of Bcl-2, in addition to their therapeutic potential, are proving to be an important investigative tool for understanding the function of Bcl-2.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15036-e15036
Author(s):  
Debanu Das ◽  
Matthew Duncton ◽  
Patricia Pellicena ◽  
Ashley Deacon ◽  
David Wilson ◽  
...  

e15036 Background: Cancer cells respond to increases in DNA damage by deploying their DNA damage response (DDR) pathways. We are building a platform for the discovery and development of target-specific DDR therapeutics, including small molecule inhibitors and targeted protein degradation warheads, founded on fragment- and structure-based drug discovery. Methods: Our DDR platform, which includes hit-to-lead, lead optimization and candidate selection, starts with hit generation from a new technology that uses high-throughput protein X-ray crystallography to directly screen compound libraries. Our hit generation process produces empirical evidence of direct target engagement. The elucidation of high-quality ligand-bound 3D structures reveals the location and pose of the ligand and details of the protein-ligand interactions. Thus we can predict the structure-function consequences of the hit molecule engagement, which sets the stage for rapid assessment of synthetic tractability and intellectual property. After hit identification, we apply a multi-pronged approach in hit-to-lead conversion and lead optimization using iterative biophysical and biochemical assays, coupled with crystallography. We are applying our approach to several new targets in DDR and will present some early progress in this space. Results: Apurinic/apyrimidinic endonuclease 1 (APE1) is the major repair enzyme for abasic sites in DNA and contributes to DNA strand break processing. Many studies have associated increased APE1 levels with enhanced growth, migration, and drug resistance in human tumor cells, and with decreased patient survival. APE1 has been implicated in over 20 human cancers, including glioblastoma, making the protein an attractive target for the development of anticancer therapeutics. Despite intensive effort, there are no clinical endonuclease inhibitors of APE1. We have identified 25 diverse small molecule fragments that bind to APE1 at two distinct sites, including the endonuclease site. Pol eta (or PolH) is a DNA polymerase implicated, among other things, in the development of cisplatin resistance in a subset of ovarian cancers. In our quest to develop PolH inhibitors, we have identified 5 diverse fragments that bind to two distinct sites in the polymerase including a new potential allosteric site. Our results on APE1 and PolH represent the first known cases of crystal structures of small molecules bound to these proteins. Flap endonuclease (FEN1) is implicated in several cancers including for example ER/tamoxifen-resistant breast cancer. We are developing a targeted protein degradation approach using PROTACs (Proteolysis-Targeting Chimeras) toward the development of novel therapeutics against FEN1. Conclusions: Our results will help us develop small molecule inhibitors and targeted protein degradation against DDR targets that may be effective as single therapies or be used to make existing therapies more effective.


Sign in / Sign up

Export Citation Format

Share Document