Oral (Drinking Water) Developmental Toxicity Study of Ammonium Perchlorate in Sprague-Dawley Rats

2003 ◽  
Vol 22 (6) ◽  
pp. 453-464 ◽  
Author(s):  
Raymond G. York ◽  
Kathleen A. Funk ◽  
Michael F. Girard ◽  
David Mattie ◽  
Joan E. Strawson

A developmental toxicity study was conducted with ammonium perchlorate (AP) in the drinking water at doses of 0.0, 0.01, 0.1, 1.0, and 30.0 mg/kg-day beginning 14 days before cohabitation and continuing through sacrifice. Twenty-four rats/group were cesarean-sectioned on day of gestation (DG) 21 and fetuses examined for visceral and skeletal alterations. An additional 16 litters/group were sacrificed on DG 21 for maternal and fetal serum TSH, T3, and T4 (thyroid-stimulating hormone, triiodothyronine, and thyroxine) levels and thyroid histopathology. Clinical and necropsy observations, body weights, feed and water consumption, and cesarean-sectioning parameters were comparable among the groups with only delays in ossification observed in the 30 mg/kg-day group. Maternal thyroid weights were increased in the 30.0 mg/kg-day group. Decreased colloid was present in male and female fetal thyroids in the 1.0 and 30.0 mg/kg-day groups. Maternal TSH was increased and T4 was decreased at all levels, and T3 was reduced at 30.0 mg/kg-day. Fetal TSH was increased at 1.0 and 30.0 mg/kg-day, T4 was reduced at 30.0 mg/kg-day, and T3 was decreased at all levels. The maternal no-observable-adverse-effect level (NOAEL) was 1.0 mg/kg-day; exposures of 30.0 mg/kg-day increased absolute and relative maternal thyroid weights and histopathology findings. The developmental NOAEL was 1.0 mg/kg-day; developmental delays in ossification occurred in the 30.0 mg/kg-day group. The colloid depletion in the thyroids and increased TSH and decreased T3 and T4 levels at lower exposures were considered adaptive and not adverse. No adverse effects on development at occurred levels that did not cause maternal toxicity. AP is not a selective developmental toxicant.

2005 ◽  
Vol 24 (6) ◽  
pp. 403-418 ◽  
Author(s):  
Raymond G. York ◽  
Elise Lewis ◽  
W. Ray Brown ◽  
Michael F. Girard ◽  
David R. Mattie ◽  
...  

A recent study further investigated the potential effects of maternal thyroid function and morphology on fetal development upon maternal exposure to ammonium perchlorate during gestation and lactation. Female Sprague-Dawley rats (25/group) were given continual access to 0 (carrier), 0.01, 0.1, 1.0, and 30.0 mg/kg-day perchlorate in drinking water beginning 2 weeks prior to cohabitation through lactation day 10. Maternal, fetal, and pup serum thyroid hormone (thyroid-stimulating hormone [TSH], triiodo thyronine [T3], thyroxine [T4]) levels and thyroid histopathology were evaluated on gestation day 21, and lactation days 5, 10, and 22. No effects of exposure were observed on cesarean-sectioning, litter parameters, or fetal alterations. Reproductive parameters, including gestation length, number of implants, litter size, pup viability, and lactation indices, were comparable among all groups. Thyroid weights of dams sacrificed on gestation day 21, and lactation days 10 and 22 were significantly increased at 30.0 mg/kg-day. Increased thyroid weights were observed in male and female pups as early as postpartum days 5 and 10, respectively. Changes in maternal and neonatal thyroid histopathology were detectable at 1.0 mg/kg-day exposure. The maternal no-observable-effect level (NOEL) was 0.1 mg/kg-day (follicular cell hyperplasia was present at 1.0 and 30.0 mg/kg-day). The developmental NOEL was less than 0.01 mg/kg-day; thyroid weights of postpartum day 10 pups were increased at all exposures. Colloid depletion at 1.0 and 30.0 mg/kg-day exposures and changes of hormone levels at all exposures were considered an adaptive effect and appeared reversible in the rodent.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Sae-Rom Yoo ◽  
Hyekyung Ha ◽  
Mee-Young Lee ◽  
Hyeun-kyoo Shin ◽  
Su-Cheol Han ◽  
...  

Ssanghwa-tang (SHT), a traditional herbal formula, has been widely used to recover fatigue or consumptive disease after an illness. Along with much attention to herbal formula, the concerns about the safety and toxicity have arisen. To establish the safety information, SHT was administrated in Crl:CD Sprague Dawley rats at a daily dose of 0, 1000, 2000, and 5000 mg/kg for 4 weeks. During the test periods, we examined the mortality, clinical observation, body weight change, food consumption, organ weights, hematology, serum biochemistry, and urinalysis parameters. No changes of mortality and necropsy findings occurred in any of the groups during the experimental period. In either sex of rats treated with SHT at 5000 mg/kg/day, changes were observed in food intake, reticulocyte, total bilirubin, some urinalysis parameters, and relative organ weights. The results indicated that SHT did not induce toxic effects at a dose level up to 2000 mg/kg in rats. This dosage was considered no observed adverse effect level (NOAEL) and was appropriate for a 13-week subchronic toxicity study.


Author(s):  
Zaida Zainal ◽  
Augustine Ong ◽  
Choo Yuen May ◽  
Sui Kiat Chang ◽  
Afiqah Abdul Rahim ◽  
...  

Palm puree is rich in antioxidants and is produced via blending various proportions of mesocarp fibre and crude palm oil. The aim of this study was to assess the acute and subchronic toxicity of palm puree in male and female Sprague–Dawley rats. For the acute toxicity study, animals administered single palm-puree doses (2000 mg kg−1) by gavage were observed daily for 14 d. For the subchronic toxicity study, the rats were administered 500, 1000, or 2000 mg kg−1 palm puree daily for 28 d. We evaluated body and organ weights; performed haematological, biochemical, and histopathological analyses of blood and organ samples during and after treatment; and calculated the oral no-observed-adverse-effect level (NOAEL). The toxicity studies showed no signs of toxicity or mortality. The haematological, biochemical, and histopathological analyses and body and organ weights indicated no evidence of substantial toxicity at any dose of palm puree. The oral lethal dose and NOAEL for the palm puree were greater than 2000 mg kg−1 d−1 over 28 d. To the best of our knowledge, the present study is the first to confirm the safety of palm puree as a novel functional food. These encouraging results warrant further studies to elucidate its potential for pharmaceutical formulations.


2007 ◽  
Vol 26 (4) ◽  
pp. 365-371 ◽  
Author(s):  
John T. Houpt ◽  
Lee C. B. Crouse ◽  
Richard A. Angerhofer ◽  
Glenn J. Leach ◽  
Gunda Reddy

Thiodiglycol (TG), a hydrolysis product of sulfur mustard (HD), is a potential contaminant of soil and water at certain military sites. To establish developmental toxicity criteria for TG, an oral developmental toxicity study was conducted in Sprague-Dawley rats. Neat thiodiglycol (99.9 %) was administered orally to mated female rats from gestation days (GDs) 5 through 19. The day of positive mating was considered day 0. A pilot study was conducted with TG at dose levels 250, 500, 1000, 2000, or 5000 mg/kg to select suitable doses for the main study. In the main study, three groups of rats (25/group) received TG by gavage at dose levels of 430, 1290, or 3870 mg/kg/day. A fourth group served as a sham control. On day 20 of gestation, all females were euthanized and a cesarean section performed. Litters were examined for soft tissue and skeletal alterations. Maternal toxicity was limited to dams receiving TG at 3870 mg/kg/day. At this dose, body weights and food consumption were reduced during certain periods of gestation. Fetuses derived from those dams exhibited a nonstatistically significant increased incidence of variations when compared to controls. Fetal body weights in the 3870 mg/kg/day group were significantly lower than controls. There was no increased incidence of anomalies when thiodiglycol-treated fetuses were compared to controls. It was concluded that TG did not produce terata. Developmental toxicity (decreased fetal weights and associated delays in development) occurred only at the maternally toxic dose of 3870 mg/kg. It appears that 1290 mg/kg/day could be considered no observed adverse effect level (NOAEL) for oral developmental toxicity. The lowest observed adverse effect level (LOAEL) was 3870 mg/kg for maternal toxicity.


2008 ◽  
Vol 27 (2) ◽  
pp. 183-188 ◽  
Author(s):  
Valerie T Politano ◽  
Elise M Lewis ◽  
Alan M Hoberman ◽  
Mildred S Christian ◽  
Robert M Diener ◽  
...  

The developmental toxicity of linalool, a widely used fragrance ingredient, was evaluated in presumed pregnant Sprague-Dawley rats (25/group). Oral dosages of 0, 250, 500, or 1000 mg/kg/day linalool were administered by gavage on gestational days 7 to 17. The presence of spermatozoa and/or a copulatory plug in situ was designated as gestational day 0. Rats were observed for viability, clinical signs, body weights, and feed consumption. Caesarean sectioning and necropsy occurred on gestational day 21. Uteri were examined for number and distribution of implantations, live and dead fetuses, and early and late resorptions. Numbers of corpora lutea were also recorded. Fetuses were weighed and examined for gender, gross external changes, and soft tissue or skeletal alterations. There were no maternal deaths, clinical signs, or gross lesions that were considered related to linalool. During the dosage period, mean relative feed consumption was significantly reduced by 7% and mean body weight gains were reduced by 11% at 1000 mg/kg/day. During the postdosage period, feed consumption values at 1000 mg/kg/day were significantly higher than vehicle control values, which corresponded to the increase in body weight gains during this period. Caesarean section and litter parameters, as well as fetal alterations, were not affected by linalool at any of the three dosages tested. On the basis of these data, the maternal no observed adverse effect level (NOAEL) of linalool is 500 mg/kg/day, whereas the developmental NOAEL is ≥ 1000 mg/kg/day. It is concluded that linalool is not a developmental toxicant in rats at maternal doses of up to 1000 mg/kg/day.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Ray A. Matulka ◽  
Ikuo Matsuura ◽  
Tohru Uesugi ◽  
Tomomi Ueno ◽  
George Burdock

Consumption of the isoflavones daidzein, genistein, glycitein, and their structural analogues is generally considered beneficial to human health. Equol is not found in soy, but is converted from daidzein by human gut bacterial flora. Research indicates that between 30–50% of the population is capable of converting daidzein to equol; therefore, there has been recent development of a new equol-rich functional food that relies on bacterial conversion of daidzein to equol under strictly controlled conditions. Therefore, a new equol-rich soy product (SE5-OH) has been developed, based on the bacterial conversion of daidzein; and its reproductive and developmental toxicity has been evaluated in a two-generation study and a developmental toxicity study with Sprague-Dawley rats at dose levels of 200, 1000, and 2000 mg/kg/day by gavage. SE5-OH contains approximately 0.65% equol, 0.024% daidzein, 0.022% genistein, and 0.30% glycitein. From the reproductive study, the no-observed-adverse-effect-level (NOAEL) for SE5-OH determined for both male and female rats is 1000 mg/kg/day (6.5 mg equol/kg/day). In the developmental toxicity phase of the study, no effects by SE5-OH were found in the embryo-fetus at any of the doses tested. The NOAEL for developmental effects of SE5-OH is 2000 mg/kg/day (13 mg equol/kg/day).


2021 ◽  
pp. 109158182098607
Author(s):  
Narendra S. Deshmukh ◽  
Shailesh Gumaste ◽  
Silma Subah ◽  
Nathasha Omal Bogoda

Palmitoylethanolamide (PEA) is an endogenous ethanolamine playing a protective and homeodynamic role in animals and plants. Prenatal developmental toxicity of PEA was tested following oral administration to pregnant female Wistar rats, from days 0 to 19 of gestation, at dosage of 250, 500, or 1,000 mg/kg body weight, according to Organisation for Economic Co-operation and Development Test Guideline No. 414. On gestation day 20, cesarean sections were performed on the dams, followed by examination of their ovaries and uterine contents. The fetuses were further examined for external, visceral, and skeletal abnormalities. Palmitoylethanolamide did not cause any alterations at any of the given dosages in the measured maternal parameters of systemic toxicity (body weight, food consumption, survival, thyroid functions, organ weight, histopathology), reproductive toxicity (preimplantation and postimplantation losses, uterus weight, number of live/dead implants and early/late resorptions, litter size and weights, number of fetuses, their sex ratio), and fetal external, visceral, or skeletal observations. Any alterations that were recorded were “normal variations” or “minor anomalies,” which were unrelated to treatment with PEA. Under the condition of this prenatal study, the no-observed-adverse-effect level of PEA for maternal toxicity, embryotoxicity, fetotoxicity, and teratogenicity in rats was found to be >1,000 mg/kg body weight/d. It indicates that PEA is well tolerated by and is safe to pregnant rats even at a high dose of 1,000 mg/kg body weight/d, equivalent to a human dose of greater than 9.7 g/d. This prenatal developmental toxicity study contributes greatly in building a robust safety profile for PEA.


2013 ◽  
Vol 32 (5) ◽  
pp. 385-394 ◽  
Author(s):  
Antoinette Y. Odendaal ◽  
Narendra S. Deshmukh ◽  
Tennille K. Marx ◽  
Alexander G. Schauss ◽  
John R. Endres ◽  
...  

This toxicological assessment evaluated the safety of a hydroethanolic extract prepared from Caralluma fimbriata (CFE), a dietary supplement marketed worldwide as an appetite suppressant. Studies included 2 in vitro genotoxicity assays, a repeated dose oral toxicity study, and a developmental study in rats. No evidence of in vitro mutagenicity or clastogenicity surfaced in the in vitro studies at concentrations up to 5000 μg of extract/plate (Ames test) or 5000 μg of extract/mL (chromosomal aberration test). No deaths or treatment-related toxicity were seen in the 6-month chronic oral toxicity study in Sprague-Dawley rats conducted at 3 doses (100, 300, and 1000 mg/kg body weight (bw)/d). The no observed effect level for CFE in this study was considered to be 1000 mg/kg bw/d. A prenatal developmental toxicity study conducted at 3 doses (250, 500, and 1000 mg/kg bw/d) in female Sprague-Dawley rats resulted in no treatment-related external, visceral, or skeletal fetal abnormalities, and no treatment-related maternal or pregnancy alterations were seen at and up to the maximum dose tested. CFE was not associated with any toxicity or adverse events.


2019 ◽  
Vol 2019 ◽  
pp. 1-25
Author(s):  
Gajanan Deshmukh ◽  
Suresh B. Venkataramaiah ◽  
Chandrashekar M. Doreswamy ◽  
Mohan C. Umesh ◽  
Rajesh B. Subbanna ◽  
...  

Coenzyme Q10 (CoQ10) is a lipid soluble, endogenous antioxidant present at highest levels in the heart followed by the kidney and liver. The reduced CoQ10 ubiquinol is well known for its chemical instability and low bioavailability. The present study was designed to synthesize ubiquinol acetate, which is more stable and biologically active, and further evaluate its safety and genotoxic potential. Synthesized ubiquinol acetate showed better stability than that of ubiquinol at the end of 3 months. In vitro genotoxicity studies (AMES test, in vitro micronucleus and chromosomal aberration) showed ubiquinol acetate as nongenotoxic with no clastogenic or aneugenic effects at high dose of 5000 and 62.5 μg/mL, respectively. In subchronic toxicity study, ubiquinol acetate was administered orally to Sprague Dawley rats at 150, 300, and 600 mg/kg/day for 90 days. No treatment related adverse effects were observed in males at 600 mg/kg/day; however, females showed treatment related increase in AST and ALT with small focal irregular white-yellow spots in liver on gross necropsy examination. Histopathological evaluation revealed hepatocellular necrosis in high dose females which was considered as adverse. Based on the results, the No-Observed-Adverse-Effect Level (NOAEL) of ubiquinol acetate in males and females was determined as 600 and 300 mg/kg/day, respectively.


Sign in / Sign up

Export Citation Format

Share Document