Use of a Statistical Model to Predict the Potential for Repeated Dose and Developmental Toxicity of Dermally Administered Crude Oil and Relation to Reproductive Toxicity

2013 ◽  
Vol 33 (1_suppl) ◽  
pp. 17S-27S ◽  
Author(s):  
Richard H. McKee ◽  
Mark Nicolich ◽  
Timothy Roy ◽  
Russell White ◽  
Wayne C. Daughtrey

Petroleum (commonly called crude oil) is a complex substance primarily composed of hydrocarbon constituents. Based on the results of previous toxicological studies as well as occupational experience, the principal acute toxicological hazards are those associated with exposure by inhalation to volatile hydrocarbon constituents and hydrogen sulfide, and chronic hazards are associated with inhalation exposure to benzene and dermal exposure to polycyclic aromatic compounds. The current assessment was an attempt to characterize the potential for repeated dose and/or developmental effects of crude oils following dermal exposures and to generalize the conclusions across a broad range of crude oils from different sources. Statistical models were used to predict the potential for repeated dose and developmental toxicity from compositional information. The model predictions indicated that the empirical data from previously tested crude oils approximated a “worst case” situation, and that the data from previously tested crude oils could be used as a reasonable basis for characterizing the repeated dose and developmental toxicological hazards of crude oils in general.

Author(s):  
N. Boisa ◽  
T. J. K. Ideriah ◽  
C. S. Okehie

Aim: To evaluate the concentrations of Polycyclic Aromatic Hydrocarbons and Total Petroleum Hydrocarbons in some Nigerian crude oils. Study Design: Field and Laboratory-Experimental Design were used in this study. Place and Duration of Study: Crude oil samples were obtained from three locations (designated as Location 1, Location 2, and Location 3) in the Niger Delta, Nigeria. Methodology: The samples were subjected to liquid-liquid extraction using dichloromethane and analysed using GC-FID. Results: The results of the analyses of the crude oils gave polycyclic aromatic hydrocarbons (PAHs) concentrations of 2.6089 x 104 ppm representing 60.06% and total petroleum hydrocarbon (TPH) concentration of 4.3201 x 104 ppm at Location 1, PAHs concentration of 4.764 x 103 ppm (62.8%) and TPH recording a concentration of 7.583x 103 ppm at Location 2, while Location 3 had PAHs concentration of 9.93 x 102 ppm (30.66%) and TPH concentration of 3.239 x 103 ppm. The total concentrations of the high molecular weight PAHs were lower than those of the low molecular weight PAHs in the samples. Also the concentrations of the individual PAHs were higher in the low molecular weight PAHs. The mean PAHs concentrations of 2707.6 ppm (location 1), 551.5 ppm (location 2) and 90.7 ppm (location 3) are different. Conclusion: The observed  results show that all the sixteen polycyclic aromatic hydrocarbons listed as priority pollutants are present in the three crude oil samples with higher concentrations in the light crude oils than in the heavy crude oil and a strong correlation with the total petroleum hydrocarbon concentration. It was also observed that though the ratios of the low molecular weight PAHs to high molecular weight PAHs of the crude oils indicate petrogenic, the unique diagnostic ratios suggest pyrogenic input. There is therefore the need to develop a method of PAHs removal from PAHs contaminated water based on locally available and cheap materials.


SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Morteza Asemani ◽  
Ahmad Reza Rabbani ◽  
Hashem Sarafdokht

Summary The ability of geochemistry techniques in reservoir-continuity studies has already been proved. Most of the traditional methods mainly involve analyzing nonpolar components of crude oil and overlooking polar components. Despite valuable information obtained from nonpolar components, these compounds are sometimes affected by various alterations or likely provide only a piece of the reservoir-compartmentalization puzzle. In this paper, an integrated geochemical approach that uses nonpolar (i.e., saturates and aromatics) and polar (i.e., asphaltenes) components of crude oil was performed to evaluate reservoir continuity efficiently. The Shadegan Oil Field in the Dezful Embayment in southwest Iran was investigated for reservoir-continuity studies to show the efficiency of this proposed technique. The selected interparaffin peak ratios and light hydrocarbons [the C7 oil correlation star diagram (C7CSD)] from whole-oil gas chromatography (GC) (WOGC) chromatograms were used to obtain oil fingerprints from the nonpolar fraction of crude oils. The Fourier-transform infrared (FTIR) spectroscopy of asphaltenes was applied to obtain oil fingerprints from the polar fraction of crude oils. The pairwise comparison of studied wells by each technique was summarized in a similarity matrix with green, yellow, and red colors to show connectivity, limited connectivity, and disconnectivity according to oil fingerprints. Finally, a compartmentalization model was prepared from the integrated results of different techniques considering the worst-case scenarios regarding the occurrence or absence of reservoir continuity when relying on individual methods for the studied field. Results show that the Shadegan Oil Field comprises three zones in the Asmari Reservoir and two zones in the Bangestan Reservoir. Reservoir-engineering data, including pressure data and pressure/volume/temperature (PVT), completely corroborated the obtained results from the geochemical approach. The consistency of results suggested FTIR oil fingerprinting of asphaltene as a novel and straightforward technique, which is a complementary or even alternative method with respect to previous geochemical methods.


2018 ◽  
Vol 5 (1) ◽  
pp. 43-54
Author(s):  
Suresh Aluvihara ◽  
Jagath K Premachandra

Corrosion is a severe matter regarding the most of metal using industries such as the crude oil refining. The formation of the oxides, sulfides or hydroxides on the surface of metal due to the chemical reaction between metals and surrounding is the corrosion that  highly depended on the corrosive properties of crude oil as well as the chemical composition of ferrous metals since it was expected to investigate the effect of Murban and Das blend crude oils on the rate of corrosion of seven different ferrous metals which are used in the crude oil refining industry and investigate the change in hardness of metals. The sulfur content, acidity and salt content of each crude oil were determined. A series of similar pieces of seven different types of ferrous metals were immersed in each crude oil separately and their rates of corrosion were determined by using their relative weight loss after 15, 30 and 45 days. The corroded metal surfaces were observed under the microscope. The hardness of each metal piece was tested before the immersion in crude oil and after the corrosion with the aid of Vicker’s hardness tester. The metallic concentrations of each crude oil sample were tested using atomic absorption spectroscopy (AAS). The Das blend crude oil contained higher sulfur content and acidity than Murban crude oil. Carbon steel metal pieces showed the highest corrosion rates whereas the stainless steel metal pieces showed the least corrosion rates in both crude oils since that found significant Fe and Cu concentrations from some of crude oil samples. The mild steel and the Monel showed relatively intermediate corrosion rates compared to the other types of ferrous metal pieces in both crude oils. There was a slight decrease in the initial hardness of all the ferrous metal pieces due to corrosion.


1998 ◽  
Vol 26 (4) ◽  
pp. 421-480
Author(s):  
Krys Bottrill

Recent developments in biomarkers relating to the interrelationship of diet, disease and health were surveyed. Most emphasis was placed on biomarkers of deleterious effects, since these are of greatest relevance to the subject of this review. The area of greatest activity was found to be that relating to biomarkers of mutagenic, genotoxic and carcinogenic effects. This is also one of the major areas of concern in considerations of the beneficial and deleterious effects of dietary components, and also the area in which regulatory testing requires studies of the longest duration. A degree of progress has also been made in the identification and development of biomarkers relating to certain classes of target organ toxicity. Biomarkers for other types of toxicity, such as immunotoxicity, neurotoxicity, reproductive toxicity and developmental toxicity, are less developed, and further investigation in these areas is required before a comprehensive biomarker strategy can be established. A criticism that recurs constantly in the biomarker literature is the lack of standardisation in the methods used, and the lack of reference standards for the purposes of validation and quality control. It is encouraging to note the growing acknowledgement of the need for validation of biomarkers and biomarker assays. Some validation studies have already been initiated. This review puts forward proposals for criteria to be used in biomarker validation. More discussion on this subject is required. It is concluded that the use of biomarkers can, in some cases, facilitate the implementation of the Three Rs with respect to the testing of food chemicals and studies on the effects of diet on health. The greatest potential is seen to be in the refinement of animal testing, in which biomarkers could serve as early and sensitive endpoints, in order to reduce the duration of the studies and also reduce the number of animals required. Biomarkers could also contribute to establishing a mechanistic basis for in vitro test systems and to facilitating their validation and acceptance. Finally, the increased information that could result from the incorporation of biomarker determinations into population studies could reduce the need for supplementary animal studies. This review makes a number of recommendations concerning the prioritisation of future activities on dietary biomarkers in relation to the Three Rs. It is emphasised, however, that further discussions will be required among toxicologists, epidemiologists and others researching the relationship between diet and health.


2021 ◽  
pp. 109158182098607
Author(s):  
Narendra S. Deshmukh ◽  
Shailesh Gumaste ◽  
Silma Subah ◽  
Nathasha Omal Bogoda

Palmitoylethanolamide (PEA) is an endogenous ethanolamine playing a protective and homeodynamic role in animals and plants. Prenatal developmental toxicity of PEA was tested following oral administration to pregnant female Wistar rats, from days 0 to 19 of gestation, at dosage of 250, 500, or 1,000 mg/kg body weight, according to Organisation for Economic Co-operation and Development Test Guideline No. 414. On gestation day 20, cesarean sections were performed on the dams, followed by examination of their ovaries and uterine contents. The fetuses were further examined for external, visceral, and skeletal abnormalities. Palmitoylethanolamide did not cause any alterations at any of the given dosages in the measured maternal parameters of systemic toxicity (body weight, food consumption, survival, thyroid functions, organ weight, histopathology), reproductive toxicity (preimplantation and postimplantation losses, uterus weight, number of live/dead implants and early/late resorptions, litter size and weights, number of fetuses, their sex ratio), and fetal external, visceral, or skeletal observations. Any alterations that were recorded were “normal variations” or “minor anomalies,” which were unrelated to treatment with PEA. Under the condition of this prenatal study, the no-observed-adverse-effect level of PEA for maternal toxicity, embryotoxicity, fetotoxicity, and teratogenicity in rats was found to be >1,000 mg/kg body weight/d. It indicates that PEA is well tolerated by and is safe to pregnant rats even at a high dose of 1,000 mg/kg body weight/d, equivalent to a human dose of greater than 9.7 g/d. This prenatal developmental toxicity study contributes greatly in building a robust safety profile for PEA.


Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 75
Author(s):  
Ivelina K. Shishkova ◽  
Dicho S. Stratiev ◽  
Mariana P. Tavlieva ◽  
Rosen K. Dinkov ◽  
Dobromir Yordanov ◽  
...  

Thirty crude oils, belonging to light, medium, heavy, and extra heavy, light sulfur, and high sulfur have been characterized and compatibility indices defined. Nine crude oil compatibility indices have been employed to evaluate the compatibility of crude blends from the thirty individual crude oils. Intercriteria analysis revealed the relations between the different compatibility indices, and the different petroleum properties. Tetra-plot was employed to model crude blend compatibility. The ratio of solubility blending number to insolubility number was found to best describe the desalting efficiency, and therefore could be considered as the compatible index that best models the crude oil blend compatibility. Density of crude oil and the n-heptane dilution test seem to be sufficient to model, and predict the compatibility of crude blends.


Chemosphere ◽  
2021 ◽  
pp. 131563
Author(s):  
Laurens van Gelderen ◽  
Kristoffer Gulmark Poulsen ◽  
Jan H. Christensen ◽  
Grunde Jomaas

1998 ◽  
Vol 19 (1) ◽  
pp. 93-126 ◽  
Author(s):  
Trond Friisø ◽  
Yannick Schildberg ◽  
Odile Rambeau ◽  
Tore Tjomsland ◽  
Harald Førdedal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document