Structural optimization design of typical adhesive bonded sandwich T-joints based on progressive damage analysis and multi-island genetic algorithm

2020 ◽  
pp. 109963622096227
Author(s):  
Yiran Niu ◽  
Xiwu Xu ◽  
Shuxiang Guo

This paper deals with the optimization of multi-laminate structures by Multi-Island Genetic Algorithm (MIGA) coupled with CAE solver. The optimization problem is a compound problem which relates to size optimization for object structure and stacking sequence optimization for variable-thickness composite laminates. Taking a typical adhesive bonded sandwich T-joint under a reference pull-off load as an instance object and establishing strength conditions on the basis of progressive damage analysis, optimum design is carried out with the total weight of joint as the target function. Progressive damage model (PDM) methodology and cohesive zone model (CZM) methodology are employed to develop an exact finite element model of the object structure. Classified failure criteria are chosen to investigate the capability of the joint in bearing the applied load. The optimization procedure on the typical adhesive bonded sandwich T-joint showed 34.24% weight reduction compared to the initial laminated structure. On the basis of history data, the study further brings out the influence of design variables on some main constraint variables.

2016 ◽  
Vol 51 (10) ◽  
pp. 1493-1524 ◽  
Author(s):  
Stephen P Engelstad ◽  
Stephen B Clay

This paper provides overall comparisons of the static results of an Air Force Research Laboratory exploration into the state of the art of existing technology in composite progressive damage analysis. In this study, blind and re-calibration bench-marking exercises were performed using nine different composite progressive damage analysis codes on unnotched and notched (open-hole) composite coupons under both static and fatigue loading. This paper summarizes the results of the static portion of this program. Comparisons are made herein of specimen stiffness and strength predictions against each other and the test data. Overall percent error data is presented, as well as a list of observations and lessons learned during this year-long effort.


Author(s):  
Hui Wang ◽  
Qiuyang Bai ◽  
Xufei Hao ◽  
Lin Hua ◽  
Zhenghua Meng

The aerodynamic devices play an important role on the performance of the Formula SAE racing car. The rear wing is the most significant and popular element, which offers primary down force and optimizes the wake. In traditional rear wing optimization, the optimization variables are first selected, and separately enumerated according to the analyzing experience of the racing car’s external flow field, and thus the optimal design is chosen by comparison. This method is complicated, and even might lose some key sample points. In this paper, the attack angle of the rear wing and the relative position parameters are set as design variables; then the design variables’ combination is determined by the DOE experimental design method. The aerodynamic lift and drag of the racing car for these variables’ combinations are obtained by the computational fluid dynamics method. With these sample points, the approximation model is produced by the response surface method. For the sake of gaining the best lift to drag ( FL/ FD) ratio, i.e. maximum down force and the minimum drag force, the optimal solution is found by the genetic algorithm. The result shows that the established optimization procedure can optimize the rear wing’s aerodynamic characteristic on the racing car effectively and have application values in the practical engineering.


2014 ◽  
Vol 1064 ◽  
pp. 108-114 ◽  
Author(s):  
Jun Kang ◽  
Zhi Dong Guan ◽  
Zeng Shan Li ◽  
Zhun Liu

A three dimensional analysis model is developed on the fatigue life prediction of composite laminates based on a progressive damage analysis. This model consists of stress analysis, fatigue failure analysis and material property degradation. Teserpe’s failure criteria is used to fatigue damage analysis. Fiber tensile/compressive breakage, matrix tensile/compressive cracking, matrix/fiber shear failure and tension/compression delamination are considered in fatigue damage analysis. The methodologies of sudden degradation and gradual degradation are both applied in the material property degradation. The stiffness and strength gradual degradation is based on the Shokrieh fatigue model, which is based on fatigue test for unidirectional laminates. In order to consider the scatter of the material in the practical structures, the stiffness and strength of the material are randomly distributed using normal distribution in the numerical model. The progressive fatigue damage model is developed in finite element code ABAQUS through user subroutine UMAT, which can simulate the fatigue damage process. Fatigue life of different ply stacking sequences and geometries composite laminates under different cycle loading are predicted. The predicted fatigue life is in good agreement with the experimental results.


2011 ◽  
Vol 326 ◽  
pp. 37-52 ◽  
Author(s):  
Hassan Ijaz ◽  
M Aurangzeb Khan ◽  
Waqas Saleem ◽  
Sajid Raza Chaudry

This paper presents the mathematical modelling of fatigue damage able to carry out simulation of evolution of delamination in the laminated composite structures under cyclic loadings. A new elastic fatigue damage evolution law is proposed here. A classical interface damage evolution law, which is commonly used to predict static debonding process, is modified further to incorporate fatigue delamination effects due to high cycle loadings. The proposed fatigue damage model is identified using Fracture Mechanics tests like DCB, ENF and MMB. Simulations of delamination under fatigue loading are performed and results are successfully compared with reported experimental data on HTA/6376C unidirectional material. Delamination crack growth with variable fatigue amplitude is also performed and simulation results show that the proposed fatigue damage law can also accommodate this variable amplitude phenomenon. A study of crack tip behaviour using damage variable evolution is also carried out in this paper. Finally the effect of mesh density on crack growth is also discussed.


2010 ◽  
Vol 123-125 ◽  
pp. 579-582
Author(s):  
Hossein Hosseini-Toudeshky ◽  
F. Mazaheri Torei ◽  
Bijan Mohammadi

The aim of the present study is evaluation of the element-free Galerkin method (EFGM) in progressive damage analyses of composite laminates. For this purpose, an orthotropic EFGM formulation is employed which is based on the first-order shear deformation theory (FSDT). In progressive damage analysis, the Hashin’s type failure criteria and their degradation rules are used. The obtained damage results from EFGM are compared with the experimental and FEM results.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3364
Author(s):  
Young Cheol Kim ◽  
Soon Ho Yoon ◽  
Geunsu Joo ◽  
Hong-Kyu Jang ◽  
Ji-Hoon Kim ◽  
...  

This study describes the numerical simulation results of aluminum/carbon-fiber-reinforced plastic (CFRP) hybrid joint parts using the explicit finite-element solver LS-DYNA, with a focus on capturing the failure behavior of composite laminates as well as the adhesive capacity of the aluminum–composite interface. In this study, two types of adhesive modeling techniques were investigated: a tiebreak contact condition and a cohesive zone model. Adhesive modeling techniques have been adopted as a widely commercialized model of structural adhesives to simulate adhesive failure based on fracture mechanics. CFRP was studied with numerical simulations utilizing LS-DYNA MAT54 to analyze the crash capability of aluminum/CFRP. To evaluate the simulation model, the results were compared with the force–displacement curve from numerical analysis and experimental results. A parametric study was conducted to evaluate the effect of different fracture toughness values used by designers to predict crash capability and adhesive failure of aluminum/CFRP parts.


Sign in / Sign up

Export Citation Format

Share Document