Sleep Deprivation Impairs 12-Hr Urine Volume Excretion in Old Rats

2009 ◽  
Vol 11 (3) ◽  
pp. 236-244 ◽  
Author(s):  
Claudia Chaperon

Excessive nocturnal urine volumes (UVs) predict almost double the death rate in older adults. Furthermore, sleep-depriving environments may increase nocturnal UVs in old age. Thus, a pilot study was designed to examine the effects of sleep-depriving lighting treatments on the 12-hr UV excretion in young adult rats (6 months, n = 6), middle-aged rats (12 months, n = 12), old rats (16 months, n = 6), and old-old rats (>20 months, n = 5). Each animal was exposed continuously to the treatments beginning with 7 days each of standard laboratory lighting conditions of on 12 hr/off 12 hr, then 7 days continuous dim lighting, and finally 7 days of continuous dim lighting plus sleep deprivation with a noxious noise. Age group and lighting condition treatments influenced 24-hr urine volume excretion (F (2, 29) = 2.41, p = .007, r2 = .8193). During sleep deprivation, rest-phase 12-hr urine volume excretion increased in both the old and old-old rats (F (2, 5) = 7.79, p < .00001).

1999 ◽  
Vol 276 (3) ◽  
pp. E558-E564 ◽  
Author(s):  
Regine Minet-Quinard ◽  
Christophe Moinard ◽  
Françoise Villie ◽  
Stephane Walrand ◽  
Marie-Paule Vasson ◽  
...  

Aged rats are more sensitive to injury, possibly through an impairment of nitrogen and glutamine (Gln) metabolisms mediated by glucocorticoids. We studied the metabolic kinetic response of adult and old rats during glucocorticoid treatment. The male Sprague-Dawley rats were 24 or 3 mo old. Both adult and old rats were divided into 7 groups. Groups labeled G3, G5, and G7 received, by intraperitoneal injection, 1.50 mg/kg of dexamethasone (Dex) for 3, 5, and 7 days, respectively. Groups labeled G3PF, G5PF, and G7PF were pair fed to the G3, G5, or G7 groups and were injected with an isovolumic solution of NaCl. One control group comprised healthy rats fed ad libitum. The response to aggression induced specifically by Dex (i.e., allowing for variations in pair-fed controls) appeared later in the aged rats (decrease in nitrogen balance from day 1 in adults but only from day 4 in old rats). The adult rats rapidly adapted to Dex treatment, whereas the catabolic state worsened until the end of treatment in the old rats. Gln homeostasis was not maintained in the aged rats; despite an early increase in muscular Gln synthetase activity, the Gln pool was depleted. These results suggest a kinetic impairment of both nitrogen and muscle Gln metabolisms in response to Dex with aging.


1996 ◽  
Vol 30 (4) ◽  
pp. 332-336 ◽  
Author(s):  
Toru R. Saito ◽  
Ryoji Hokao ◽  
Yasumasa Wakafuji ◽  
Noriyuki Igarashi ◽  
Yoshio Agematsu ◽  
...  

The present study was undertaken to determine sperm motility and counts in semen yielded by para-chloroamphetamine (PCA)-induced ejaculation of aged rats which had lost their reproductive ability, and to attempt artificial insemination with suspensions of spermatozoa obtained in this way. The semen yielded by PCA-induced ejaculation from aged (75-week-old) rats had average sperm counts of 0.82±0.69 × 107, which were much lower than the average counts (9.42±1.65 × 107) for semen spontaneously ejaculated by young adult rats (14 weeks old). However, 77.5% of the spermatozoa contained in the PCA-induced semen were rated as showing the most active movement. Spermatozoa collected in this way were injected into the upper parts of both uterine horns or into both ovarian bursae. Both methods made the females pregnant, but the results were better after injection into the ovarian bursae. The offspring born to these females showed no abnormalities.


1991 ◽  
Vol 131 (2) ◽  
pp. 251-257 ◽  
Author(s):  
M. Parenti ◽  
D. Cocchi ◽  
G. Ceresoli ◽  
C. Marcozzi ◽  
E. E. Müller

ABSTRACT The mechanisms underlying the age-related decrease and increase in somatotroph responsiveness to growth hormone-releasing factor (GHRF) and somatostatin respectively were studied in rat pituitary membranes in vitro. Basal adenylate cyclase (AC) activity was similar in pituitary membranes from rats of 8 days (either sex) and male rats of 3 months, but it was almost threefold higher in membranes from male rats of 21–23 months. GHRF induced a lower percentage stimulation of AC activity in membranes from infant and old than adult rats. Somatostatin inhibited stimulation of AC induced by forskolin more effectively in membranes from adult than infant and old rats. In parallel experiments, since the tissue we used is formed by a mixed population of pituitary cells, we evaluated, for comparison, the effect on AC of neurohormones, i.e. vasoactive intestinal polypeptide (VIP) and dopamine which act primarily on lactotrophs. VIP induced a lower fold-stimulation of AC activity in membranes from infant and old than adult rats. Dopamine inhibited forskolin-induced stimulation of AC in the following rank order of magnitude: old, adult and infant rats, and was also more effective in inhibiting basal AC activity in old than in adult rats. The stimulatory and inhibitory G proteins (Gs and Gi) coupled to AC were measured indirectly by evaluating stimulatory and inhibitory effects of different concentrations of GTP on AC. GTP, at stimulatory concentrations, increased AC activity in membranes from infant and adult rats similarly whereas its effect was significantly greater in membranes from old rats. Conversely, GTP, at inhibitory concentrations, decreased AC activity similarly in membranes from adult and infant rats, whereas in old rats inhibition was apparent at more than a tenfold lower concentration of GTP. These data suggest (1) that the greater somatotroph sensitivity to GHRF in terms of GH secretion of the early postnatal period is not due to supersensitive GHRF receptors but rather may be accounted for, at least partially, by the low function of somatostatinergic receptors; (2) that the inability of GHRF to stimulate GH release in aged rats probably results from an uncoupling between the GHRF receptor and the G protein; and (3) that in aged rats the decreased ability of somatostatin to inhibit AC activity, in spite of the high Gi activity, results from a reduced number of somatotroph cells and, hence, receptors. Journal of Endocrinology (1991) 131, 251–257


2001 ◽  
Vol 90 (4) ◽  
pp. 1359-1364 ◽  
Author(s):  
Kathleen M. Buhl ◽  
Christopher R. Jacobs ◽  
Russell T. Turner ◽  
Glenda L. Evans ◽  
Peter A. Farrell ◽  
...  

The ability of bone to respond to increased loading as a function of age was tested by use of three-point bending and histomorphometry. The hindlimbs of male Fischer 344 rats of three age groups (young = 4 mo, adult = 12 mo, and old = 22 mo; n = 10 per age group) were progressively overloaded by training the rats to depress a lever high on the side of a cage while wearing a weighted backpack. This squatlike movement required full extension of the hindlimbs. Exercised (Exer) rats performed 50 repetitions three times per week for 9 wk. Pack weight was gradually increased to 65% of body weight. Controls ( n = 10 per age group) performed the same exercise without additional weight. Neither the mechanical properties of the femur nor histomorphometry in the proximal tibia was significantly affected in young or adult rats. However, old Exer rats were found to have significantly smaller medullary areas and a decreased trabecular spacing than their age-matched controls. These results suggest a greater sensitivity to increased loading in aged rats.


2002 ◽  
Vol 50 (9) ◽  
pp. 1179-1186 ◽  
Author(s):  
Tasuku Sasaki ◽  
Yoshihiro Akimoto ◽  
Yuji Sato ◽  
Hayato Kawakami ◽  
Hiroshi Hirano ◽  
...  

We examined the distribution of sialoglycoconjugates in the cerebellum of 9-week-old and 30-month-old rats using light microscopy and electron microscopy in combination with two lectins, Maackia amurensis lectin (MAL) for Siaα2-3Gal and Sambucus sieboldiana agglutinin (SSA) for Siaα2-6Gal. Each lectin showed characteristic staining patterns. In young adult rats, MAL stained a strongly granular layer, a weakly molecular layer, and the medullary lamina, while SSA more strongly stained the medullary lamina than the molecular and granular layers. After aging, different staining patterns were obtained. Intense SSA reactivity was observed in the granular layer and intense MAL reactivity was observed in the medullary lamina of the aged groups. The reactivity of Purkinje cells with MAL was downregulated in the aged rats. These results indicated that Siaα2-3Gal and Siaα2-6Gal were expressed in distinct regions of the rat cerebellum and that their expression patterns changed in the aged brain.


2008 ◽  
Vol 295 (4) ◽  
pp. R1328-R1340 ◽  
Author(s):  
S. Deurveilher ◽  
E. M. Cumyn ◽  
T. Peers ◽  
B. Rusak ◽  
K. Semba

To understand how female sex hormones influence homeostatic mechanisms of sleep, we studied the effects of estradiol (E2) replacement on c-Fos immunoreactivity in sleep/wake-regulatory brain areas after sleep deprivation (SD) in ovariectomized rats. Adult rats were ovariectomized and implanted subcutaneously with capsules containing 17β-E2 (10.5 μg; to mimic diestrous E2 levels) or oil. After 2 wk, animals with E2 capsules received a single subcutaneous injection of 17β-E2 (10 μg/kg; to achieve proestrous E2 levels) or oil; control animals with oil capsules received an oil injection. Twenty-four hours later, animals were either left undisturbed or sleep deprived by “gentle handling” for 6 h during the early light phase, and killed. E2 treatment increased serum E2 levels and uterus weights dose dependently, while attenuating body weight gain. Regardless of hormonal conditions, SD increased c-Fos immunoreactivity in all four arousal-promoting areas and four limbic and neuroendocrine nuclei studied, whereas it decreased c-Fos labeling in the sleep-promoting ventrolateral preoptic nucleus (VLPO). Low and high E2 treatments enhanced the SD-induced c-Fos immunoreactivity in the laterodorsal subnucleus of the bed nucleus of stria terminalis and the tuberomammillary nucleus, and in orexin-containing hypothalamic neurons, with no effect on the basal forebrain and locus coeruleus. The high E2 treatment decreased c-Fos labeling in the VLPO under nondeprived conditions. These results indicate that E2 replacement modulates SD-induced or spontaneous c-Fos expression in sleep/wake-regulatory and limbic forebrain nuclei. These modulatory effects of E2 replacement on neuronal activity may be, in part, responsible for E2's influence on sleep/wake behavior.


1987 ◽  
Vol 252 (5) ◽  
pp. R842-R847 ◽  
Author(s):  
N. Ballatori ◽  
E. Miles ◽  
T. W. Clarkson

Previous studies in neonatal and suckling animals showed that immature animals have a greatly diminished capacity to excrete manganese and therefore were considered to be unable to regulate tissue manganese concentrations. In contrast, the present studies indicate that suckling rats have the capacity to excrete excess manganese at rates nearly comparable to those of adults. Eight- to 10-day-old rats given a tracer dose of 54MnCl2 (essentially carrier free), either via gavage or by intraperitoneal injection showed little elimination of the 54Mn until the 18-19th day of life, when there was an abrupt increase in the rate of the metal's excretion. However, when manganese was given in doses of 1 and 10 mg/kg, the young animals excreted from 30-70% of the dose in only 4 days, at which time a new rate of excretion was achieved. This enhanced rate of excretion remained constant until the 18-19th day of life, when it was again accelerated. Biliary excretion of manganese, the primary route for the elimination of the metal, was only 30-60% lower in 14-day-old rats compared with adults at doses ranging from tracer to 10 mg 54Mn/kg. For both the 14-day-old and adult rats, an apparent biliary transport maximum was reached at a dose of 10 mg Mn/kg. These studies indicate that the excretory pathways for manganese are well developed in the neonatal rat. The avid retention of tracer quantities of manganese by the neonate may be a consequence of the scarcity of this essential trace metal in its diet.


1977 ◽  
Vol 166 (3) ◽  
pp. 421-428 ◽  
Author(s):  
Joanne Pieringer ◽  
G. Subba Rao ◽  
Paul Mandel ◽  
Ronald A. Pieringer

The sulphogalactosylglycerolipid of rat brain is closely associated with the process of myelination, as demonstrated by the following observations. 1. The lipid is barely detectable in rat brain before 10 days of age, accumulates rapidly between age 10 and 25 days, and remains relatively constant in amount (between 0.3 and 0.4μmol per brain) thereafter into adult life. 2. The activity of adenosine 3′-phosphate 5′-sulphatophosphate–galactosyldiacylglycerol sulphotransferase is almost absent before 10 days of age, attains a maximum at age 20 days, and slowly decreases thereafter with increasing age. This developmental pattern correlates well with that of other myelin-specific metabolites. 3. Both the concentration of the sulphogalactosylglycerolipid and the activity of sulphotransferase are greatly decreased in the non-myelinating jimpy mouse. 4. The myelin fraction of rat brain contains most of the sulphogalactosylglycerolipid. The lipid occurs in a diacyl and an alkylacyl form. Determinations of the relative amount of each type in brain showed about a 1:1 mixture in both 21-day-old and adult rats. Rats injected with H235SO4 at 20 days of age lost35S from the diacyl form at a higher rate than from the alkylacyl compound over a 21-day period. These data suggest that the diacyl form has a higher turnover than the alkylacyl derivative. The percentage of the total sulpholipid content of brain contributed by the sulphogalactosylglycerolipid is 16% in 21-day-old rats and 8.4% in adult rats.


2013 ◽  
Vol 114 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Heidi Kletzien ◽  
John A. Russell ◽  
Glen E. Leverson ◽  
Nadine P. Connor

Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.


1992 ◽  
Vol 116 (1) ◽  
pp. 167-176 ◽  
Author(s):  
D Wren ◽  
G Wolswijk ◽  
M Noble

We have been studying the differing characteristics of oligodendrocyte-type-2 astrocyte (O-2A) progenitors isolated from optic nerves of perinatal and adult rats. These two cell types display striking differences in their in vitro phenotypes. In addition, the O-2Aperinatal progenitor population appears to have a limited life-span in vivo, while O-2Aadult progenitors appear to be maintained throughout life. O-2Aperinatal progenitors seem to have largely disappeared from the optic nerve by 1 mo after birth, and are not detectable in cultures derived from optic nerves of adult rats. In contrast, O-2Aadult progenitors can first be isolated from optic nerves of 7-d-old rats and are still present in optic nerves of 1-yr-old rats. These observations raise two questions: (a) From what source do O-2Aadult progenitors originate; and (b) how is the O-2Aadult progenitor population maintained in the nerve throughout life? We now provide in vitro evidence indicating that O-2Aadult progenitors are derived directly from a subpopulation of O-2Aperinatal progenitors. We also provide evidence indicating that O-2Aadult progenitors are capable of prolonged self renewal in vitro. In addition, our data suggests that the in vitro generation of oligodendrocytes from O-2Aadult progenitors occurs primarily through asymmetric division and differentiation, in contrast with the self-extinguishing pattern of symmetric division and differentiation displayed by O-2Aperinatal progenitors in vitro. We suggest that O-2Aadult progenitors express at least some properties of stem cells and thus may be able to support the generation of both differentiated progeny cells as well as their own continued replenishment throughout adult life.


Sign in / Sign up

Export Citation Format

Share Document