Retinal vascular tortuosity: Mechanisms and measurements

2020 ◽  
pp. 112067212097990
Author(s):  
Manuel AP Vilela ◽  
Carlos EV Amaral ◽  
Maria Angélica T Ferreira

Retinal vessel tortuosity has been used in the diagnosis and management of different clinical situations. Notwithstanding, basic concepts, standards and tools of measurement, reliable normative data and clinical applications have many gaps or points of divergence. In this review we discuss triggering causes of retinal vessel tortuosity and resources used to assess and quantify it, as well as current limitations.

1985 ◽  
Vol 191 (1) ◽  
pp. 57-60
Author(s):  
Erling Grønvold Olsen ◽  
Amund Ringvold ◽  
Sigvald B. Refsum

2019 ◽  
Vol 2 (3) ◽  
pp. 43-67
Author(s):  
Sanyukta Chetia ◽  
SR Nirmala

Purpose: The study of retinal blood vessel morphology is of great importance in retinal image analysis. The retinal blood vessels have a number of distinct features such as width, diameter, tortuosity, etc. In this paper, a method is proposed to measure the tortuosity of retinal blood vessels obtained from retinal fundus images. Tortuosity is a situation in which blood vessels become tortuous, that is, curved or non-smooth. It is one of the earliest changes that occur in blood vessels in some retinal diseases. Hence, its detection at an early stage can prevent the progression of retinal diseases such as diabetic retinopathy, hypertensive retinopathy, retinopathy of prematurity, etc. The present study focuses on the measurement of retinal blood vessel tortuosity for the analysis of hypertensive retinopathy. Hypertensive retinopathy is a condition in which the retinal vessels undergo changes and become tortuous due to long term high blood pressure. Early recognition of hypertensive retinopathy signs remains an important step in determining the target-organ damage and risk assessment of hypertensive patients. Hence, this paper attempts to estimate tortuosity using image-processing techniques that have been tested on artery and vein segments of retinal images. Design: Image processing-based model designed to measure blood vessel tortuosity. Methods: In this paper, a novel image processing-based model is proposed for tortuosity measurement. This parameter will be helpful for analyzing hypertensive retinopathy. To test the eff ectiveness of the system in determining tortuosity, the method is first applied on a set of synthetically generated blood vessels. Then, the method is repeated on blood vessel (both artery and vein) segments extracted from retinal images collected from publicly available databases and on images collected from a local eye hospital. The blood vessel segment images that are used in the method are binary images where blood vessels are represented by white pixels (foreground), while black pixels represent the background. Vessels are then classified into normal, moderately tortuous, and severely tortuous by following the analysis performed on the images in the Retinal Vessel Tortuosity Data Set (RET-TORT) obtained from BioIm Lab, Laboratory of Biomedical Imaging (Padova, Italy). This database consists of 30 artery segments and 30 vein segments, which were manually ordered on the basis of increasing tortuosity by Dr. S. Piermarocchi, a retinal specialist belonging to the Department of Ophthalmology of the University of Padova (Italy). The artery and vein segments with the fewest number of turns are given a low tortuosity ranking, while those with the greatest number of turns are given a high tortuosity ranking by the expert. Based on this concept, our proposed method defines retinal image segments as normal when they present the fewest number of twists/turns, moderately tortuous when they present more twists/turns than normal but fewer than severely tortuous vessels, and severely tortuous when they present a greater number of twists/turns than moderately tortuous vessels. On implementing our image processing-based method on binary blood vessel segment images that are represented by white pixels, it is found that the vessel pixel (white pixels) count increases with increasing vessel tortuosity. That is, for normal blood vessels, the white pixel count is less compared to moderately tortuous and severely tortuous vessels. It should be noted that the images obtained from the different databases and from the local hospital for this experiment are not hypertensive retinopathy images. Instead, they are mostly normal eye images and very few of them show tortuous blood vessels. Results: The results of the synthetically generated vessel segment images from the baseline for the evaluation of retinal blood vessel tortuosity. The proposed method is then applied on the retinal vessel segments that are obtained from the DRIVE and HRF databases, respectively. Finally, to evaluate the capability of the proposed method in determining the tortuosity level of the blood vessels, the method is tested with a standard tortuous database, namely, the RET-TORT database. The results are then compared with the tortuosity level mentioned in the database. It was found that our method is able to classify blood vessel images as normal, moderately tortuous, and severely tortuous, with results closely matching the clinical ordering provided by the expert in the RET-TORT database. Subjective evaluation was also performed by research scholars and postgraduate students to cross-validate the results. Conclusion: The close correlation between the tortuosity evaluation using the proposed method and the clinical ordering of retinal vessels as provided by the retinal specialist in the RET-TORT database shows that, although simple, this method can evaluate the tortuosity of vessel segments effectively.  


Author(s):  
Christopher J. Correia ◽  
James G. Murphy ◽  
Leon H. Butler

2019 ◽  
Vol 20 (11) ◽  
pp. 2824 ◽  
Author(s):  
Masako Baba ◽  
Kentaro Yoshida ◽  
Masaki Ieda

Natriuretic peptides (NPs) have become important diagnostic and prognostic biomarkers in cardiovascular diseases, particularly in heart failure (HF). Diagnosis and management of coronary artery disease and atrial fibrillation (AF) can also be guided by NP levels. When interpreting NP levels, however, the caveat is that age, sex, body mass index, renal dysfunction, and race affect the clearance of NPs, resulting in different cut-off values in clinical practice. In AF, NP levels have been associated with incident AF in the general population, recurrences after catheter ablation, prediction of clinical prognosis, and the risk of stroke. In this article, we first review and summarize the current evidence and the roles of B-type NP and atrial NP in HF and coronary artery disease and then focus on the increasing utility of NPs in the diagnosis and management of and the research into AF.


Drug Research ◽  
2019 ◽  
Vol 70 (01) ◽  
pp. 6-11 ◽  
Author(s):  
Elham Ahmadian ◽  
Solmaz Maleki Dizaj ◽  
Aziz Eftekhari ◽  
Elaheh Dalir ◽  
Parviz Vahedi ◽  
...  

AbstractHyaluronic acid (HA) is widely used in the biomedicine due to its biocompatibility, biodegradability, and nontoxic properties. It is crucial for cell signaling role during morphogenesis, inflammation, and wound repair. After hydrogel formation, HA easily is converted to elastic sheets in order to use in preclinical and clinical applications. In addition, HA-derived hydrogels are easily used as vectors for cell and medication in tissue repairing and regenerative medicine. Moreover, in comparison with other polymers, HA -based hydrogels play a key role in in cellular behavior, including stem cell differentiation. The current paper reviews both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document