The Potential Applications of Hyaluronic Acid Hydrogels in Biomedicine

Drug Research ◽  
2019 ◽  
Vol 70 (01) ◽  
pp. 6-11 ◽  
Author(s):  
Elham Ahmadian ◽  
Solmaz Maleki Dizaj ◽  
Aziz Eftekhari ◽  
Elaheh Dalir ◽  
Parviz Vahedi ◽  
...  

AbstractHyaluronic acid (HA) is widely used in the biomedicine due to its biocompatibility, biodegradability, and nontoxic properties. It is crucial for cell signaling role during morphogenesis, inflammation, and wound repair. After hydrogel formation, HA easily is converted to elastic sheets in order to use in preclinical and clinical applications. In addition, HA-derived hydrogels are easily used as vectors for cell and medication in tissue repairing and regenerative medicine. Moreover, in comparison with other polymers, HA -based hydrogels play a key role in in cellular behavior, including stem cell differentiation. The current paper reviews both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Wan Nie ◽  
Baolin Zhang ◽  
Xianjia Yan ◽  
Lichao Su ◽  
Sheng Wang ◽  
...  

Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with hyaluronic acid (HA) functional groups have potential applications as cell targeting materials. However, SPIONs incubated with high-molecular weight HA can result in severe agglomeration. In this work, we found that when modified with degraded HA (hyaluronan oligosaccharides (oHAs)), the nanoparticles were uniformly dispersed with small hydrodynamic sizes, and the oHA-modified SPIONs exerted minimal cytotoxicity. With the same functional groups as HA, the oHA-modified SPIONs may have various biomedical applications.


2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Jongho Kim ◽  
Chaemyeong Lee ◽  
Ji Hyun Ryu

Recently, catechol-containing polymers have been extensively developed as promising materials for surgical tissue adhesives, wound dressing, drug delivery depots, and tissue engineering scaffolds. Catechol conjugation to the polymer backbone provides adhesive properties to the tissue and does not significantly affect the intrinsic properties of the polymers. An example of a catecholic polymer is catechol-conjugated hyaluronic acid. In general, hyaluronic acid shows excellent biocompatibility and biodegradability; thus, it is used in various medical applications. However, hyaluronic acid alone has poor mechanical and tissue adhesion properties. Catechol modification considerably increases the mechanical and underwater adhesive properties of hyaluronic acid, while maintaining its biocompatibility and biodegradability and enabling its use in several biomedical applications. In this review, we briefly describe the synthesis and characteristics of catechol-modified hyaluronic acid, with a specific focus on catechol-involving reactions. Finally, we discuss the basic concepts and therapeutic effects of catechol-conjugated hyaluronic acid for biomedical applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 906
Author(s):  
Le Minh Tu Phan ◽  
Thuy Anh Thu Vo ◽  
Thi Xoan Hoang ◽  
Sungbo Cho

Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.


2020 ◽  
Vol 9 (1) ◽  
pp. 1059-1079
Author(s):  
Fei Xing ◽  
Changchun Zhou ◽  
Didi Hui ◽  
Colin Du ◽  
Lina Wu ◽  
...  

AbstractHyaluronic acid (HA) is widely distributed in the human body, and it is heavily involved in many physiological functions such as tissue hydration, wound repair, and cell migration. In recent years, HA and its derivatives have been widely used as advanced bioactive polymers for bone regeneration. Many medical products containing HA have been developed because this natural polymer has been proven to be nontoxic, noninflammatory, biodegradable, and biocompatible. Moreover, HA-based composite scaffolds have shown good potential for promoting osteogenesis and mineralization. Recently, many HA-based biomaterials have been fabricated for bone regeneration by combining with electrospinning and 3D printing technology. In this review, the polymer structures, processing, properties, and applications in bone tissue engineering are summarized. The challenges and prospects of HA polymers are also discussed.


2018 ◽  
Vol 43 (7) ◽  
pp. 3565-3575 ◽  
Author(s):  
Elbadawy A. Kamoun ◽  
Ahmed M. Omer ◽  
Marwa M. Abu-Serie ◽  
Sherine N. Khattab ◽  
Heba M. Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document