Does blood flow restriction training increase the diameter of forearm vessels in chronic kidney disease patients? A randomized clinical trial

2018 ◽  
Vol 19 (6) ◽  
pp. 626-633 ◽  
Author(s):  
Jefferson BN Barbosa ◽  
Tuíra O Maia ◽  
Priscila S Alves ◽  
Shirley D Bezerra ◽  
Elaine CSC Moura ◽  
...  

Introduction: Blood flow restriction training can be used as an alternative to conventional exercise in chronic kidney disease patients with indication of arteriovenous fistula. Objective: Evaluating the efficacy of blood flow restriction training in the diameter and distensibility change of the cephalic vein and the diameter and flow of the radial artery, muscle strength and forearm circumference in chronic kidney disease patients with arteriovenous fistula pre-creation. Methods: A blind randomized clinical trial consisting of 26 chronic kidney disease patients allocated into a blood flow restriction training group (blood flow restriction; n = 12) and a group without blood flow restriction training (control group; n = 14). Blood flow restriction was performed at 50% of systolic blood pressure and using 40% of handgrip strength as load for the isometric exercises in both groups. Results: An increase in the diameter of the cephalic vein in the 2 cm (p = 0.008) and 10 cm segments (p = 0.001) was observed in the control group. The diameter of the radial artery increased in all segments in the blood flow restriction group (2, 10 and 20 cm; p = 0.005, p = 0.021 and p = 0.018, respectively) and in the 10 and 20 cm segments (p = 0.017 and p = 0.026) in the control group. Handgrip strength only increased in the control group (p = 0.003). Conclusion: Physical training associated with blood flow restriction increased cephalic vein diameters in both groups and was effective in increasing the diameter of the radial artery; however, it did not demonstrate superiority over the exercise group protocol without blood flow restriction.

2019 ◽  
Vol 34 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Rodrigo Kohn Cardoso ◽  
Aline Machado Araujo ◽  
Fabrício Boscolo Del Vechio ◽  
Maristela Bohlke ◽  
Franklin Correa Barcellos ◽  
...  

Objective: This study aims to compare the effect of intradialytic aerobic exercise with blood flow restriction, without blood flow restriction (conventional) and no exercise (control) on muscle strength and walking endurance among chronic kidney disease patients. Design: Open label and parallel group randomized controlled trial. Subjects: Adult patients with chronic kidney disease on hemodialysis. Intervention: A 12-week intradialytic training with or without blood flow restriction compared with a control group. Main measures: Strength and walking endurance were measured using thoracolumbar dynamometry and a 6-minute walk test, respectively, before and after training. Results: A total of 66 patients were randomized into three groups: blood flow restriction group ( n = 22), conventional exercise group ( n = 22) and control group ( n = 22). There were seven dropouts, and 59 patients were included in the analysis. There was a significant increase in the 6-minute walking distance in the blood flow restriction group (from 412.7 (115.9) to 483.0 (131.0) m, P = 0.007) in comparison with the conventional exercise group (from 426.79 (115.00) to 433.2 (120.42) m, not significant) and the control group (from 428.4 (108.1) to 417.3 (100.2) m, not significant). The change in the walking distance over time was significantly different among groups (intervention group/time, P = 0.02). The simple effects test found a significant time effect only in the blood flow restriction group. There was no significant difference in strength change between the groups. Conclusion: Among chronic kidney disease patients, intradialytic exercise of low/moderate intensity with blood flow restriction was more effective in improving walking endurance than conventional exercise or no exercise.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hugo Luca Corrêa ◽  
Rodrigo Vanerson Passos Neves ◽  
Lysleine Alves Deus ◽  
Michel Kendy Souza ◽  
Anderson Sola Haro ◽  
...  

2019 ◽  
Vol 7 (3_suppl2) ◽  
pp. 2325967119S0019 ◽  
Author(s):  
Bradley Lambert ◽  
Corbin A. Hedt ◽  
Robert A. Jack ◽  
Michael Moreno ◽  
Domenica Delgado ◽  
...  

Objectives: Patients often experience atrophy and bone loss immediately following anterior cruciate ligament (ACL) reconstruction. Rehabilitation (rehab) combined with blood flow restriction (BFR) therapy have been shown to mitigate muscle atrophy and reduce timelines for earlier return to function. Little is known about how BFR may impact bone loss. The objectives this study were to determine if BFR provides additional benefits when added to standard rehab in young active patients following ACL reconstruction with regards to preserving bone, recovering muscle, and regaining physical function. Methods: Fourteen active young adults (M=8, F=6; 23±7 yr; 170±10 cm, 75±14 kg) undergoing ACL repair via patellar tendon autograft were recruited, provided informed consent, and were randomized into two groups (CONTROL, n=7 & BFR, n=7) who performed 12wks of rehab beginning at 10 days post-surgery (2/wk). Both groups performed the same rehab protocol. However, during select exercises [quadriceps contractions wks1-3, bilateral leg press wk3-12, eccentric leg press wk4-12, hamstring curl wk4-6, eccentric hamstring curl wk7-12.], the BFR group exercised with 80% arterial limb occlusion using an automated tourniquet around the proximal thigh outfitted with Doppler (Delfi®). Exercise resistance was set at 20% of predicted 1-repetition maximum assessed in the contralateral limb. Exercises were performed for 4 sets of 30-15-15-15 repetitions separated by 30 s of rest. Functional assessments were performed at wk8 and wk12 post-surgery. Bone mineral density (BMD), bone mass, and lean muscle mass (LM) were measured using DEXA (Figure 1, GE®) at pre-surgery as well as wk6 and wk12 of rehab. Statistical Analysis: A 2(group) x 3(time) ANCOVA (co-varied on pre-surgery measures) was used to detect and compare changes in muscle and bone measures from pre-surgery at wk6 and wk12. A 2(group) x 2(time) ANOVA was used to detect and compare changes in functional outcomes tested at wk8 and wk12 between groups. Significant interactions were followed with a Tukey’s post hoc test for pairwise comparisons. Type I error was set at α=0.05. Results: Results are shown in Table 1. Both groups experienced similar decreases from pre-surgery measures in total LM at wk6 (p<0.05) with total lean mass in only the CONTROL group remaining diminished at wk12 (p<0.05). Whole leg LM in the injured limb was decreased in the CONTROL group, but not the BFR group, at both wk6 and wk12 (p<0.05). Thigh LM was found to be decreased in both groups at wk6 but to a greater extent in the CONTROL compared to the BFR group and remained decreased in only the CONTROL group at wk12. Whole leg bone mass was decreased in the control group at wk6 and in both groups wk12 (p<0.05). The CONTROL group was observed to have a decrease in BMD at the distal femur and proximal tibia as wk12 as well as the proximal fibula at wk6 and wk12 (p<0.05). Both groups demonstrated similar improvements in single leg squat distance, Y-balance, leg curl, and leg press from wk8 to wk12 of rehab (p<0.05). (Completed Data, N=32 anticipated by time of conference). Conclusion: In addition to recovering muscle to a greater extent than standard rehab alone, the addition of BFR to ACL rehab exercises appears to have a protective effect on bone. This effect also appears to not be limited to the site of cuff compression. Future studies are needed to examine the biochemical and mechanical mechanisms by which BFR may simultaneously act on bone and muscle. [Table: see text]


2017 ◽  
Vol 12 (3) ◽  
pp. 139-145 ◽  
Author(s):  
Hiroyuki Maeda, MD, PhD ◽  
Hideaki Iwase, PhD ◽  
Akio Kanda, MD, PhD ◽  
Itaru Morohashi, MD, PhD ◽  
Kazuo Kaneko, MD, PhD ◽  
...  

Background: After an emergency or disaster, subsequent trauma can cause severe bleeding and this can often prove fatal, so promptly stopping that bleeding is crucial to preventing avoidable trauma deaths. A tourniquet is often used to restrict blood flow to an extremity. In operation and hospital, the tourniquet systems currently in use are pneumatically actuated by an air compressor, so they must have a steady power supply. These devices have several drawbacks: they vibrate and are noisy since they are pneumatically actuated and they are far from portable since they are large and heavy.Introduction: Presumably, the drawbacks of pneumatic tourniquets could be overcome by developing a small, lightweight, vibration-free, quiet, and battery- powered tourniquet system. The current study built a small, vibration-free electrohydrodynamic (EHD) pump and then used that pump to restrict blood flow to the leg of rats in an experiment. This study explored the optimal conditions for effective restriction of blood flow by assessing biochemical and musculoskeletal complications following the restriction of blood flow, and this study also examined whether or not an EHD pump could be used to actuate a tourniquet system.Methods: A tourniquet cuff (width 12 mm × length 150 mm, material: polyolefin) was placed on the thigh of Wistar rats and pressure was applied for 2 hours by a device that uses EHD phenomena to generate pressure (an EHD pump). Animals were divided into four groups based on how much compressive pressure was applied with a tourniquet: 40 kPa (300 mm Hg, n = 13),  30 kPa (225 mm Hg, n = 12), 20 kPa (150 mm Hg, n = 15), or 0 kPa (controls, n = 25). Tissue oxygen saturation (regional oxygen saturation, denoted here as rSO2) was measured to assess the restriction of blood flow. To assess behavior once blood flow resumed, animal activity was monitored for third day and the amount of movement was counted with digital counters. Body weight was measured before and after the behavioral experiment, and changes in body weight were determined. Blood was sampled after a behavioral experiment and biochemically assessed and creatine kinase (CK) levels were measured.Results: Tissue oxygen saturation decreased significantly in each group. When a tourniquet was applied at a pressure of 30 kPa or more, tissue oxygen saturation decreased significantly. The amount of movement (the count) over third day decreased more when a tourniquet was applied at a higher pressure. The control group resumed the same amount of movement per day second after blood flow resumed. Animals to which a tourniquet was applied at a pressure of 20 or 30 kPa resumed the same amount of movement third day after blood flow resumed. In contrast, animals to which a tourniquet was applied at a pressure of 40 kPa did not resume the same amount of movement third day after blood flow resumed. After the behavioral experiment, animals to which a tourniquet was applied at a pressure of 40 kPa had a significantly lower body weight in comparison to the control group. After the behavioral experiment, animals to which a tourniquet was applied at a pressure of 40 kPa had significantly elevated CK levels in comparison to the control group.Discussion and Conclusion: A relationship between blood flow restriction pressure and tissue oxygen saturation was noted. rSO2 measurement can be used to assess the restriction of blood flow during surgery. On the basis of the decrease in rSO2, blood flow was effectively restricted at a pressure of 30 kPa or more. When, however, blood flow was restricted at a pressure of 40 kPa, weight loss and decreased movement were noted and CK levels increased after the behavioral experiment. Thus, complications had presumably developed due to damage to muscle tissue. These findings indicate that blood flow was effectively restricted in this experiment and they also indicate the existence of an optimal blood flow restriction pressure that does not cause musculoskeletal complications. The pressure in question was around 30 kPa. The tourniquet system that was developed here is actuated with an EHD pump that is still in the trial stages. That said, its pressure can readily be controlled and this pump could be used in a tourniquet system since it is quiet, vibration-free, and small. The pressure of this pump can be finely adjusted to prevent musculoskeletal complications.


Author(s):  
Tanya Gujral ◽  
Jeyanthi Subburaj ◽  
Kiran Sharma

Abstract Objectives To examine the effects of moderate intensity resistance training with blood flow restriction on muscle strength and forearm girth. Methods Total of 39 students enrolled in this study were divided into three groups that is group A (control group), group B and group C. Group A performed exercise training without restrictive pressure, group B & C performed exercise training with 50 and 75 mmHg respectively. Both the outcome measures were evaluated on day 1 and day 12th with the help of digital dynamometer and measuring tape. Results Repeated measure ANOVA with Post hoc analysis was done using SPSS software version 20. The result of the study showed significant (p≤0.05) within subject improvement in muscle strength and muscle girth in all the three groups. However, significant improvement in muscle strength was found in between group analysis (p≤0.05). Conclusions The results of the study can be concluded as the partial blood flow restriction (50 mmHg) with moderate intensity resistance training resulted in greater handgrip strength than the other two groups. No difference was found in forearm girth among the three groups, however within the group difference was found.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio de Olival Fernandes ◽  
Yvoty Alves dos Santos Sens ◽  
Vivian Bertoni Xavier ◽  
Luiz Antonio Miorin ◽  
Vera Lúcia dos Santos Alves

Purpose. Exercise is recommended for patients undergoing hemodialysis, to reduce the decrease in functional capacity secondary to the progression of chronic kidney disease. A cycle ergometer can be easily added to an exercise routine during hemodialysis sessions. The purpose of this article was to assess the results of a training protocol with the cycle ergometer during hemodialysis sessions on the respiratory function and functional capacity of patients with chronic kidney disease on hemodialysis. Method. In this randomized clinical trial (NCT no. 02834026), 39 patients undergoing hemodialysis were randomly allocated into two groups: the treatment group (TG, n = 20), who underwent a cycle ergometer protocol training, and the control group (GC, n = 19), not trained. The TG attended 24 training sessions, three times a week, during the intradialytic period. Training intensity was aimed at keeping the heart rate between 50 and 70% of its maximum. All participants were evaluated before and after the eight consecutive weeks of follow-up and had biochemicals data, anthropometric, functional, and respiratory outcomes evaluated. Results. A significant difference was observed between groups in forced vital capacity, forced expiratory volume in the first second, peak expiratory flow, maximal inspiratory and expiratory pressure, and Borg score and distance covered in the six-minute walk test. Improvement was also observed in biochemical and Kt/V test results for the TG. Conclusion. The systematic training regimen with a cycle ergometer resulted in benefits in the respiratory function and functional capacity in patients with chronic kidney disease undergoing hemodialysis.


Sign in / Sign up

Export Citation Format

Share Document