Effect of wear on the performance of hole entry hybrid conical journal bearing employing constant flow valve compensation

Author(s):  
Sanjay R Pawar ◽  
Vikas M Phalle

Hybrid bearings gets worn gradually during the start and stop operation. This wearing leads to change in the geometry of bearing and affects the radical clearance as well as fluid film thickness. Therefore, these discontinuities in the radial clearance can influence the performance characteristics. With the purpose of preventing irreparable failure state of bearing assembly, it is essential to concentrate on the actual changes in the performance parameters of hole entry hybrid conical journal bearing due to wear. In this context, the main aim of this analysis is to predict the performance of hole entry hybrid conical journal bearing employing constant flow valve compensation. Modified Reynolds equation in spherical coordinate form is used to govern the flow of lubricant in the narrow region between journal and conical bearing. The solution to this Reynolds equation is obtained by finite element analysis with appropriate boundary conditions. This paper summarizes that for a given bearing with constant flow valve as compensating element, the wear causes variation in lubricant film thickness, which strongly affects load capacity, pressure generated, and dynamic performance parameters.

2020 ◽  
Vol 37 (3−4) ◽  
Author(s):  
Prashant Govindrao Khakse ◽  
Vikas M. Phalle

The present work studies the analysis of a non recessed hole entry conical hybrid/hydrostatic journal bearing adjusted for constant flow valve (CFV) restriction. The paper provides effectiveness between the conical bearings with hole entry operating in hybrid and hydrostatic mode. The Reynolds formulae, for the flow of fluid through the mating surfaces of a conical journal and bearing, are numerically worked out in both the modes considering the finite element analysis (FEA) and the necessary boundary preconditions. Holes in double row are marked on conical bearing circumference to accommodate the CFV restrictors, the angular distance between two holes are 30o apart from the apex. Qualitative features of the conical journal bearing system with hole entry have been elaborated to analyze bearing performance for radial load variation Wr = 0.25-2. Numerical results obtained from the present study indicate that load carrying capacity of conical bearing, operating in hydrostatic mode, is enhanced by the maximum pressure, direct fluid film damping and direct film stiffness coefficients vis-a-vis corresponding hybrid mode.  


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Suresh Verma ◽  
Vijay Kumar ◽  
K. D. Gupta

A comparative study on the performance characteristics of the flexible multirecess hydrostatic journal bearing system with constant flow valve and capillary restrictors has been presented considering the effect of micropolar parameters. The modified Reynolds equation for the flow of micropolar lubricant through the bearing has been solved using finite element method, and the resulting elastic deformation in the bearing shell has been determined iteratively. The results indicate that the micropolar parameters of the lubricant affect the performance of the flexible multirecess hydrostatic journal bearing system quite significantly.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Suresh Verma ◽  
Vijay Kumar ◽  
K. D. Gupta

This paper presents a theoretical study of the performance characteristics of a constant flow valve compensated multirecess hydrostatic journal bearings operating with micropolar lubricant. The finite element method and iterative procedure have been used to solve the modified Reynolds equation governing the micropolar lubricant flow in the bearing. The performance characteristics are presented for a wide range of nondimensional load, lubricant flow, and micropolar parameters. It has been observed that the micropolar parameters significantly influence the performance characteristics of the bearing.


Author(s):  
Vikas M. Phalle ◽  
Sanjay R. Pawar ◽  
Sangram S. Patil

The conical fluid film hybrid journal bearing may be developed as a modification to overcome the adverse effects of cylindrical journal bearing configuration. Hybrid bearing also have a capability to take advantage of simultaneous hydrodynamic and hydrostatic action. This paper aims to study analytically the performance characteristics of a non-recessed, worn hybrid conical journal bearing compensated with constant flow valve as restrictor. The Reynolds equation for conical bearing is developed in spherical coordinate system for governing the flow of iso-viscous incompressible fluid in the clearance space of conical journal and bearing and it is solved by finite element method together with restrictor flow equation. Numerically simulated results indicate that appreciable change in the performance characteristics of worn hybrid conical journal bearing with change in speed parameter and they are expected to be quite useful for the bearing designer.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
H. C. Garg ◽  
Vijay Kumar ◽  
H. B. Sharda

The effect of viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on the performance of hole-entry and slot-entry hybrid journal bearings system is the focus of this investigation. The performance characteristics of nonrecessed hybrid journal bearings operating with different flow controlling devices, i.e., constant flow valve, capillary, orifice, and slot restrictors, have been compared. Finite element method has been used to solve the Reynolds equation governing the flow of lubricant in the bearing clearance space along with the restrictor flow equation, energy equation and conduction equation using suitable iterative technique. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The results indicate that variation in viscosity due to rise in temperature and non-Newtonian behavior of the lubricant affects the performance of nonrecessed hybrid journal bearing system quite significantly. The results further indicate that bearing performance can be improved by selecting a particular bearing configuration in conjunction with a suitable compensating device.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Prashant G. Khakse ◽  
Vikas M. Phalle

Purpose This paper aims to describe how successfully a particular restrictor delivers its best in increasing the conical journal bearing performance. The restrictors are used in the hole-entry conical journal bearing subjected to hybrid mode. Thus, the restrictors, like constant flow valve (CFV), orifice and capillary, are studied comparatively. Design/methodology/approach Numerical simulation for the bearing results with the three restrictors are obtained by using finite element method (FEM) under the well-known modified Reynolds equation. Findings When the hole-entry conical journal bearings, with the restrictor design parameter range C¯s2 = 0.03 – 0.09, are operated, the results obtained are quite distinctive and significant. It indicates that the CFV restrictor-based conical bearing gives enhanced performance in comparison to orifice and capillary restrictors. Moreover, it suggests the performance-wise sequence of the restrictors in hybrid bearings as CFV > Orifice > Capillary. Originality/value The outcome of the research paper will give insight to help the bearing designer to choose the particular restrictor in hybrid conical bearing depending on the industrial need.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


Author(s):  
Jiajia Yan ◽  
Guanghui Zhang ◽  
Zhansheng Liu ◽  
Fan Yang

A modified Reynolds equation for bump type gas foil thrust bearing was established with consideration of the gas rarefaction coefficient. Under rarefied gas lubrication, the Knudsen number which was affected by the film thickness and pressure was introduced to the Reynolds equation. The coupled modified Reynolds and lubricating film thickness equations were solved using Newton-Raphson Iterative Method and Finite Difference Method. By calculating the load capacity for increasing rotor speeds, the lift-off speed under certain static load was obtained. Parametric studies for a series of structural parameters and assembled clearances were carried out for bearing optimization design. The results indicate that with gas rarefaction effect, the axial load capacity would be decreased, and the lift-off speed would be improved. The rarefied gas has a more remarkable impact under a lower rotating speed and a smaller foil compliance coefficient. When the assembled clearance of the thrust bearing rotor system lies in a small value, the lift-off speed increases dramatically as the assembled clearance decreases further. Therefore, the axial clearance should be controlled carefully in assembling the foil thrust bearing. It’s worth noting that the linear uniform bump foil stiffness model is not exact for large foil compliance ∼0.5, especially for lift-off speed analysis, due to ignoring the interaction between bumps and bending stiffness of the foil.


1968 ◽  
Vol 90 (1) ◽  
pp. 271-280 ◽  
Author(s):  
B. J. Hamrock

A linearized PH solution to the Reynolds equation was obtained while neglecting side leakage. The analysis was divided into two parts—the step and ridge regions. The pressure profile across the step and ridge region of the various pads which are placed around the journal was obtained from the linearized PH Reynolds equation. Knowing the pressure, the load components and attitude angle were calculated. The resulting equations were found to be a function of the bearing parameters (the eccentricity and compressibility number) and the step parameters (ratio of the stepped clearance to the ridge clearance, ratio of the angle extended by the ridge to the angle extended by the pad, and number of pads placed around the journal). The maximum load capacity can be determined by numerically differentiating the load with respect to the step bearing parameters while finding where the slope is zero. A series of data was run while varying the bearing parameters. The attitude angle was calculated for the various cases which were run.


1991 ◽  
Vol 113 (1) ◽  
pp. 210-213 ◽  
Author(s):  
J. K. Scharrer ◽  
R. F. Hecht ◽  
R. I. Hibbs

Reynolds equation is solved for the turbulent flow of liquid hydrogen through an orifice compensated hydrostatic bearing with a worn stator element. The clearance function for the worn bearing is defined by the depth and circumferential location of wear and the resulting intersection of the journal and housing radii. Analytical results are presented for stiffness, damping and leakage as a function of bearing wear. The results show that the performance of the bearing degrades steadily for wear amounts greater than 5 percent of the radial clearance and is relatively insensitive to the geometrical location of the wear.


Sign in / Sign up

Export Citation Format

Share Document