Acoustic design tools for estimation of sound insulation performance of wood wall and floor assemblies

2021 ◽  
Vol 263 (6) ◽  
pp. 267-274
Author(s):  
Cheng Qian ◽  
Lin Hu ◽  
Christian Dagenais ◽  
Sylvain Gagnon

The National Building Code of Canada 2015 stipulates the minimum requirements of the airborne sound insulation transmission through common interior walls and ceiling/floor assemblies. The required minimum Apparent Sound Transmission Class (ASTC) is 47 in Canada, whereas the Impact Insulation Class (IIC) for floors is recommended to be higher than 55. For many years, significant efforts were made to develop sound insulation prediction models or tools to predict the sound insulation performance of wall and floor/ceiling assemblies at the design phase in order to meet the requirements and the recommendations made by codes. However, today few models can provide a reliable acoustics design tool. In this document, three prediction tools thought to be practically useful are presented and evaluated. Between these three prediction tools, one is an analytical model of the Insul software while the other two are empirical models developed by the National Research Council of Canada and the American Wood Council. This paper compared the STC and IIC ratings of wood wall and floor assemblies estimated by these three models and verified them by the measured STC and IIC ratings. This work aims at providing an idea for readers to choose a suitable design tool to proceed with their acoustic designs.

2021 ◽  
Vol 263 (1) ◽  
pp. 5203-5215
Author(s):  
Jianhui Zhou ◽  
Zijian Zhao

Mass timber buildings are gaining increasing popularity as a sustainable alternative to concrete and steel structures. Mass timber panels, especially cross-laminated timber (CLT), are often used as floors due to their dry and fast construction. CLT has poor impact sound insulation performance due to its lightweight and relatively high bending stiffness. Floating concrete toppings are often applied to increase both the airborne and impact sound insulation performance. However, the impact sound insulation performance of floating concrete toppings on CLT structural floors is affected by both the concrete thickness and resilient interlayer. This study investigated the efficiency of both continuous and discrete floating floor assemblies through mock-up building tests using small-scale concrete toppings according to ASTM E1007-16. It was found that the improvements by continuous floating floor assemblies are dependent on the concrete thicknesses and dynamic stiffness of resilient interlayers. The improvements cannot be well predicted by the equations developed for concrete structural floors. The highest apparent impact sound insulation class (AIIC) achieved with continuous floating floor assemblies in this study was 53 dBA, while that of the discrete floating floor assemblies was up to 62 dBA. The discrete floating floor solution showed great potential for use in mass timber buildings due to the high performance with thinner concrete toppings.


2021 ◽  
Vol 263 (1) ◽  
pp. 5595-5599
Author(s):  
Davi Akkerman ◽  
Paola Weitbrecht ◽  
Mariana Shieko ◽  
Marcel Borin ◽  
Leonardo Jacomussi

Considering Impact sound level requirements accomplishment in Brazil, floating floors are still considered as an inviable solution for building companies due to the implications in the total cost of building, mainly for social housing. Alternative and sometimes cheaper solutions are those undertaken in the receiver room. However, the lack of laboratory and field tests on the acoustic performance of this type of system is still a barrier for acoustic designing in Brazil. The aim of this paper is to study and validate different constructive solutions developed jointly with building companies for improving the impact sound insulation performance on the receiving room of new Brazilian housing constructions.


2019 ◽  
Vol 275 ◽  
pp. 05001
Author(s):  
Xiaoyu Zhang ◽  
Xiamin Hu

At present, the impact sound insulation performance of the residential floor attracts increasing attention, which is a critical index to evaluate the physical performance of the residential building. Improving the sound insulation performance is an effective measure to improve the living quality and solve the contradictions between neighbors. Therefore, many sound insulation standards have been established to guide the design of building sound insulation. In this paper, comparisons between Chinese code and Eurocode on the impact sound insulation requirements of the residential floor were presented, including the evaluation parameter and the limit value of sound insulation. In addition, the applicability of limit value of sound insulation standard for each country was analyzed in detail through the existing experimental data of different floor structures, and then reasonable suggestions were put forward.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 40
Author(s):  
Nata Amiryarahmadi ◽  
Wolfgang Kropp

Experience with wooden multi-storey houses have shown that impact sound insulation is one of most critical issues to ensure a good indoor environment. Even in cases where the impact sound insulation is fulfilled, people perceive the sound from e.g. walking neighbours as very disturbing. To investigate the subjective perception, a test facility is needed which allows for a coherent evaluation of different floor designs by listening test. The facility should ensure, that when comparing different floors, the same excitation by a walker and the same receiving room are involved. Only the floor design should be changed. As a consequence the spread in the data will only be due to the spread in the perception by subjects. In this paper a virtual design tool for low frequency impact sound insulation is presented, which consists of four parts; measured walking forces, floor models, an auralisation system which consists of a grid of loudspeakers simulating the vibration of the floor and a receiving room furnished as a common living room. In a pilot study a listening test is carried out for 13 different floors with different impact sound spectra at frequencies below 100 Hz. The results indicate that the judged annoyance strongly correlates with the judged loudness. However, there is a substantial spread observed in between the subjects participating in the listening tests. To understand this spread, a more extended study is needed with more participants and a classification of the subjects with respect to criteria such as noise sensitivity or age.


2020 ◽  
Vol 68 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Barry Marshall Gibbs ◽  
Michel Villot

This article coincides with recent publications of international standards, which provide methods of predicting the performance of both heavyweight and lightweight buildings in terms of airborne sound insulation and impact sound isolation, from the performance of individual elements such as walls and floors. The performances of the elements are characterized by the sound reduction index and the impact sound pressure level. To predict the sound pressure level due to vibrating sources (i.e., mechanical installations, water services and other appliances), source data are required in a form appropriate as input for prediction models similar to the above, i.e., as equivalent single quantities and frequency band-averaged values. Three quantities are required for estimating the structure-borne power for a wide range of installation conditions: activity (the free velocity or the blocked force of the operating source), source mobility (or the inverse, impedance) and receiver mobility (or impedance) of the connected building element. Methods are described for obtaining these source quantities, including by using laboratory reception plates. The article concludes with a proposed database, based on laboratory measurements and simple mobility calculations, which provides a practical approach to predicting structureborne sound in buildings.


2021 ◽  
Vol 263 (3) ◽  
pp. 3504-3510
Author(s):  
Christopher Ono ◽  
Todd Beiler ◽  
Devin Clausen

The use of the door transmission class rating in lieu of the apparent sound transmission class rating has yet to gain traction within building codes and specified project requirements. This paper presents a case study involving performance requirement testing conducted at a university's media facility, in which sound insulation properties were a critical design and construction focus. Both test methods described in ASTM E2964 and ASTM E336 were performed where a door was the test partition. Door transmission class ratings were presented in comparison to apparent sound transmission class ratings for the same partition. Testing was performed in a variety of situations, including scenarios both inside and outside of the minimum requirements of testing standards. Our analysis considers the effectiveness of the recently adopted ASTM E2964 in comparison to the methods of the ASTM E336. We also consider some of the subtle differences between the two test methods and how they may impact the testing of certain adjacencies.


2016 ◽  
Vol 24 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Anders Homb ◽  
Catherine Guigou-Carter ◽  
Andreas Rabold

Wooden building systems, including cross-laminated timber elements, are becoming more common. The last few years have seen new developments and documentation of innovative types of cross-laminated timber floor assemblies. Regarding impact sound associated to walking persons, running or jumping children, such floor assemblies can be regarded as a weak part. So far, there are no reliable standardized calculation models available, for prediction of impact sound in the entire frequency range. Therefore the design is always based upon previous experiences and available measurements. This article presents the results of a number of well controlled sound insulation measurements of cross-laminated timber/massive wood floor constructions conducted in laboratories. The collection of data and results analysis highlight some basic phenomena. For instance, how structural differences related to the grouping of the constructions change the frequency distribution of the impact sound level and the single number quantities. Another significant result is the influence of the dynamic stiffness of the resilient interlayer of floating floor systems and the mass per unit area of the floors. Based on this analysis, the aim is to identify similarities and carry out simplifications. The data will be further processed and used in the development of prediction models and optimization process of cross-laminated timber floor assemblies.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4144
Author(s):  
Jui-Yen Lin ◽  
Chieh-Ting Yang ◽  
Yaw-Shyan Tsay

Cross-laminated Timber (CLT) has become an emerging board material of wood construction that is strong enough to sustain a high-rise building. However, many wooden congregate housing units overseas that utilize CLT have poor sound environments because the low mass of such wood influences sound insulation performance. In this research, we explored the effect of different CLT walls on sound insulation performance and integrated applicable sound insulation simulation tools to simplify the process of designing a CLT wall structure. This research aimed at a double wall and CLT combined with a gypsum board as the research object. The sound insulation performance test was carried out in a laboratory, while the sound insulation performance of the structure was predicted through simulation tools and prediction models and then compared with the measured values to verify the applicability of the simulation tool. The CLT with a double wall and CLT with gypsum board (CLT + GB) achieved Rw of 50 dB. The numerical simulation had better prediction performance than INSUL at the double wall, while the double wall with cavity structure was close to the measured result via mass law calculation. The INSUL-predicted CLT with a gypsum board at 500 Hz~3150 Hz was close to the measured value.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2050
Author(s):  
Beatriz Castro Dias Cuyabano ◽  
Gabriel Rovere ◽  
Dajeong Lim ◽  
Tae Hun Kim ◽  
Hak Kyo Lee ◽  
...  

It is widely known that the environment influences phenotypic expression and that its effects must be accounted for in genetic evaluation programs. The most used method to account for environmental effects is to add herd and contemporary group to the model. Although generally informative, the herd effect treats different farms as independent units. However, if two farms are located physically close to each other, they potentially share correlated environmental factors. We introduce a method to model herd effects that uses the physical distances between farms based on the Global Positioning System (GPS) coordinates as a proxy for the correlation matrix of these effects that aims to account for similarities and differences between farms due to environmental factors. A population of Hanwoo Korean cattle was used to evaluate the impact of modelling herd effects as correlated, in comparison to assuming the farms as completely independent units, on the variance components and genomic prediction. The main result was an increase in the reliabilities of the predicted genomic breeding values compared to reliabilities obtained with traditional models (across four traits evaluated, reliabilities of prediction presented increases that ranged from 0.05 ± 0.01 to 0.33 ± 0.03), suggesting that these models may overestimate heritabilities. Although little to no significant gain was obtained in phenotypic prediction, the increased reliability of the predicted genomic breeding values is of practical relevance for genetic evaluation programs.


Sign in / Sign up

Export Citation Format

Share Document