Contribution of perforated steel ribs to load-carrying capacities of steel and concrete composite slabs under negative bending

2018 ◽  
Vol 21 (12) ◽  
pp. 1879-1894 ◽  
Author(s):  
Xiaoqing Xu ◽  
Yuqing Liu ◽  
Yize Zuo

To attain a better understanding of the contribution of perforated steel ribs to the load-carrying capacities of steel and concrete composite slabs, six specimens with different shear connectors and areas of steel bars were tested under negative bending. Applied load, deformation, location and subsequent trajectory of cracks, strains, and failure mode of each specimen were recorded during the tests. Shear cracks were observed in two specimens, while in the other specimens only bending cracks were found. The perforated L-shaped ribs were proved to reduce the shear crack risk of composite bridge deck slabs and have a larger contribution to the loading-carrying capacities of composite slabs than plain ribs. Based on the experimental results, calculation methods were proposed to evaluate the flexural and shear strength of composite slabs. The calculated methods can quantitatively show the favorable influence of perforated steel ribs on the loading-carrying capacities of composite slabs, and the failure modes can be well predicted.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Siva Avudaiappan ◽  
Erick I. Saavedra Flores ◽  
Gerardo Araya-Letelier ◽  
Walter Jonathan Thomas ◽  
Sudharshan N. Raman ◽  
...  

An experimental investigation is performed on various cold-formed profiled sheets to study the connection behavior of composite deck slab actions using bolted shear connectors. Various profiles like dovetailed (or) re-entrant profiles, rectangular profiles and trapezoidal profiles are used in the present investigation. This experimental investigation deals with the evaluation of various parameters such as the ultimate load carrying capacity versus deflection, load versus slip, ductility ratio, strain energy and modes of failure in composite slab specimens with varying profiles. From the test results the performance of dovetailed profiled composite slabs’ resistance is significantly higher than the other two profiled composite deck slabs.


2018 ◽  
Vol 16 (8) ◽  
pp. 368-381 ◽  
Author(s):  
Hailin Huang ◽  
Ao Li ◽  
Lin Chen ◽  
Chuijun Zeng ◽  
Mingqiao Zhu

2020 ◽  
pp. 136943322098166
Author(s):  
Weiwei Lin

In this study, straight composite steel-concrete beams were tested to investigate their mechanical performance under combined negative bending and torsional moments. Two specimens were used in this study, and different ratios between the applied negative bending and torsional moments were induced. Load and deflection relationships, strain development on the steel main girder and shear connectors (stud), and the slip development on the steel-concrete interface were recorded in the test and reported in this paper. The results indicate that increase of torsional moment will result in the significant decrease of the load-carrying capacities (e.g. yield load and ultimate load) of the specimens. It was also found that the normal strains of stud shear connectors in such beams are very large and non-negligible compared to their shear strains. In addition, the maximum interface slip was found occurring at around the 1/4 span, and the support conditions and serious crack of the concrete were considered to be the main causes. The research results obtained in this study can provide references for the design and analysis of steel-concrete composite beams subjected to the combined negative bending and torsional moments.


2011 ◽  
Vol 8 (1) ◽  
pp. 29-34
Author(s):  
M. Youcef ◽  
M. Mimoune ◽  
F. Mimoune

This paper describes the reliability analysis of shear connection in composite beams with profiled steel sheeting. The profiled steel sheeting had transverse ribs perpendicular to the steel beam. The level of safety of shear connection, and failure modes were determinate. An extensive parametric study was conducted to study the effects on the safety and behaviour of shear connection by changing the profiled steel sheeting geometries, the diameter and height of headed stud, as well as the strength of concrete. We compared the level safety calculated using the American specification, British standard and European code for headed stud shear connectors in composite slabs with profiled steel sheeting perpendicular to the steel beam. It is found that the design overestimated the level safety of shear connection.


2006 ◽  
Vol 326-328 ◽  
pp. 1811-1816 ◽  
Author(s):  
Young Ho Kim ◽  
Jae Ho Jung ◽  
Soon Jong Yoon ◽  
Won Sup Jang

In the construction of composite bridge structures, various types of shear connectors are usually used to provide an efficient load transfer and the composite action of two or more different materials. In the previous work conducted by authors, a new type of the shear connector was introduced, which is the perforated shear connector with flange heads (T-shaped perforated shear connector), and the structural behavior of the shear connector was discussed based on the results of push-out tests. For the practical design of new shear connector, it is necessary to develop the equation for the prediction of the load carrying capacity of the shear connector. In this study, the existing design equations for the Perfobond shear connector were briefly analyzed and the equation for the prediction of the shear capacity of T-shaped perforated shear connector was suggested empirically. By comparing the results obtained by the suggested equation, the existing equations for the Perfobond shear connector, and the experiment, the applicability and effectiveness of the suggested equation was estimated.


2007 ◽  
Vol 334-335 ◽  
pp. 381-384 ◽  
Author(s):  
Jeong Hun Nam ◽  
Soon Jong Yoon ◽  
Dong Min Ok ◽  
Sun Kyu Cho

In recent years, the FRP-concrete composite bridge deck system has been introduced because of its light-weight and durability. The FRP-concrete composite bridge deck is composed of FRP module and concrete, and they are connected with shear connectors. In order to insure the composite action between FRP module and concrete, appropriate types of shear connector need to be installed. In this study, new type of FRP shear connector was suggested and the experimental investigations are conducted based on the studies of Perfobond. In the experimental study, the push-out test was conducted and the load carrying mechanism was analyzed including the friction effect of sand coating. Considering the load carrying mechanism of perforated shear connector under shear force, the empirical equation for the prediction of shear strength of perforated FRP shear connector was suggested.


2021 ◽  
Vol 14 (2) ◽  
pp. 1-17
Author(s):  
Ibrahim Abbas ◽  
Amer M. Ibrahim ◽  
Teeba A. Jassim

The aim of this research is to investigate experimentally the effect of adding shear connectors to the composite deck slabs which have various geometries of steel sheeting. The behavior and resistance of composite slab is basically depending on the development of longitudinal shear resistance. In this study six specimens of composite deck slabs which have different types of geometries of steel sheets (trapezoidal, triangle and T-shapes) with dimensions (1850mm x 500mm x 110mm) were casted and tested under four-point load in presence and absence of shear connectors in order to evaluate the behavior and longitudinal shear resistance of composite slabs. The results show that the adding shear connectors to composite slabs with trapezoidal shape and triangle shape act to increase ultimate load capacity by 22.2% and 17.8% respectively as compared with composite slabs without shear connectors while effect of adding shear connectors to the composite slab with T-shape was very little or can be neglected. As well as the adding shear connectors to composite slabs with trapezoidal shape and triangle shape act to decreasing the deflection as compared with the same load also act to enhance the general performance of slabs


Author(s):  
Aleksandar Vidaković ◽  
Jaroslav Halvonik

Reinforced concrete (RC) slabs without shear reinforcement are commonly used in the existing bridge structures. An ability of RC slabs to distribute the concentrated loads due to the wheel pressure in transverse direction is an important property for their verification. The aim of this paper is to investigate the effect of redistribution of shear forces and bending moments on the load carrying capacity of RC slabs subjected to concentrated loads. Two methods of the assessment are used: simplified analytical formulations and linear finite element analysis (LFEA). The obtained results are consequently compared with the test results taken from three experimental campaigns. The analyses show big differences among the results obtained from the simplified analytical methods that are based on the design equations introduced in the relevant standards. Improved methods, such as LFEA combined with analytical post-processing method, reflect the structural behaviour in a better way and provide more accurate load-bearing capacity prediction of the bridge deck slabs.


2021 ◽  
Vol 15 (1) ◽  
pp. 17-54
Author(s):  
Simret T. Deresa ◽  
Jinjun Xu ◽  
Cristoforo Demartino ◽  
Giovanni Minafò ◽  
Gaetano Camarda

The use of composite beams made with traditional concrete and bio-based materials (such as timber and bamboo) is a valuable solution to reduce the environmental impact of the building sector. Timber-Concrete Composite (TCC) beams have been used for decades in structural applications such as new buildings, refurbishment of old timber structures, and bridges. Recently, different researchers suggested composite beams based on engineered bamboo, commonly named Bamboo-Concrete Composite (BCC) beams. This study presents a systematic comparison of structural performances and connection behavior of TCC and BCC beams under short-term static load. TCCs beams are compared to BCC ones using similar shear connectors. The most important aspects of the two composite systems are compared: mechanical behavior of connectors and structural behaviors of full-scale composite beams (e.g., failure modes, connection stiffness, connection shear strength, ultimate load-carrying capacity, maximum deflection and composite efficiency). This comprehensive review indicates that BCC beams have similar or even better structural performances compared with TCC.


2013 ◽  
Vol 40 (9) ◽  
pp. 909-916 ◽  
Author(s):  
Yi Liu ◽  
Ammar Alkhatib

An experimental program involving the test of 25 push-out specimens was conducted to study the behaviour and strength of shear studs in the application of composite bridge decks and to assess the detailing requirement specified in the code practice. Testing parameters included reinforcement mesh position, presence of stud head, and stud height. An alternative type of shear studs, referred to as adjustable studs, was also studied and its capacity was compared with conventional studs. Results showed that the position of reinforcement mesh affected the specimen failure mode and ultimate load. Comparing with the cases where the mesh was placed either flush with the stud head or above the stud, the maximum ultimate load was reached and the failure was by stud shear-off when the mesh intercepted the studs. Shear studs with heads resulted in a higher ultimate load in specimens than unheaded shear studs. In the comparison between conventional and adjustable shear studs, while they shared similar failure modes, adjustable studs showed on average lower load capacity than their conventional counterparts. For all specimens studied, only specimens with reinforcement mesh satisfying the detailing requirement were able to attain the code specified strength.


Sign in / Sign up

Export Citation Format

Share Document