Shear properties of a new type recycled aggregate concrete interlocking hollow block masonry with axial load

2021 ◽  
pp. 136943322110125
Author(s):  
Jie Li ◽  
Hao Zhou ◽  
Wenwen Chen ◽  
Zhongfan Chen

Comprehensively considering the positive contribution of energy conservation and the reduction of the construction skill requirement for workers, a new type of interlocking hollow block using recycled aggregates concrete (IHAC) with the compressive strength defined as MU10 was proposed, which could help improve more than 56% of the construction efficiency compared to common used concrete hollow blocks. In order to study the shear properties and promote its application in building engineering, the shear strength of 10 groups (three specimens for each group) of masonries considering different axial stress level and whether or not to use concrete in the grouting holes were studied, and the failure mode as well as the shear strength of the masonries were analyzed. And then, the calculation formulas for predicting the shear strength of the IHAC masonry were obtained by using the parameter fitting method based on the Coulomb failure theory, which could well reflect the parabolic shaped changing characteristic of the shear strength with the increasing of the axial stress, and the maximum difference was within 18% between the calculated and test results.

2021 ◽  
Vol 13 (2) ◽  
pp. 745
Author(s):  
Jie Li ◽  
Hao Zhou ◽  
Wenwen Chen ◽  
Zhongfan Chen

Considering the advantages of energy conservation and reducing the construction skill requirement of the workers, a new type of interlocking hollow block using recycled aggregates concrete (IHB-RAC) with the compressive strength up to 10 Mpa was proposed, which could help improve more than 56% of the construction efficiency compared to commonly used concrete hollow blocks. In order to study the mechanical properties and promote the application of this new type block in building engineering, the masonries considering different strengths of mortar and the concrete used in the grouting holes were designed, and the corresponding compressive and shear strength, as well as the failure mode of the masonries were studied according to the test results. Then, experimental results were compared with the calculated values obtained from Chinese code GB50003-2011 to check the suitability of the standards. In order to make an accurate prediction of the compressive strength of the masonry, modifying coefficients were suggested considering the positive contributions of the connecting keys. In addition, according to the test results, an appropriate calculation method for accurately predicting the shear strength of the grouted IHB-RAC masonry was proposed by separately considering the effort of the mortar and the grouting hole concrete.


2021 ◽  
Vol 13 (10) ◽  
pp. 5741
Author(s):  
Muhammad Junaid Munir ◽  
Syed Minhaj Saleem Kazmi ◽  
Yu-Fei Wu ◽  
Xiaoshan Lin ◽  
Muhammad Riaz Ahmad

The addition of macro-polypropylene fibres improves the stress-strain performance of natural aggregate concrete (NAC). However, limited studies focus on the stress-strain performance of macro-polypropylene fibre-reinforced recycled aggregate concrete (RAC). Considering the variability of coarse recycled aggregates (CRA), more studies are needed to investigate the stress-strain performance of macro-polypropylene fibre-reinforced RAC. In this study, a new type of 48 mm long BarChip macro-polypropylene fibre with a continuously embossed surface texture is used to produce BarChip fibre-reinforced NAC (BFNAC) and RAC (BFRAC). The stress-strain performance of BFNAC and BFRAC is studied for varying dosages of BarChip fibres. Results show that the increase in energy dissipation capacity (i.e., area under the curve), peak stress, and peak strain of samples is observed with an increase in fibre dosage, indicating the positive effect of fibre addition on the stress-strain performance of concrete. The strength enhancement due to the addition of fibres is higher for BFRAC samples than BFNAC samples. The reduction in peak stress, ultimate strain, toughness and specific toughness of concrete samples due to the utilisation of CRA also reduces with the addition of fibres. Hence, the negative effect of CRA on the properties of concrete samples can be minimised by adding BarChip macro-polypropylene fibres. The applicability of the stress-strain model previously developed for macro-synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC is also examined.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


2017 ◽  
Vol 44 (3) ◽  
pp. 212-222
Author(s):  
Shakeel Ahmad Waseem ◽  
Bhupinder Singh

Shear strength of interfaces in natural aggregate concrete and in recycled aggregate concrete has been investigated using initially uncracked push-off specimens by varying the following parameters: replacement level of the recycled aggregates (0%, 50%, and 100%), concrete grade (normal-strength and medium-strength), and clamping force on the shear plane. Development of truss action for resisting interface shear was indicated by the observed crack patterns in the tested specimens and a truss-based analysis recommended in the literature in combination with a simplified failure envelope for concrete subjected to biaxial stresses has been used for shear strength predictions of the tested specimens. The proposed methodology, which is considered to be more rational than the empirical shear strength models available in the literature was calibrated for both the concrete types and gave conservative and reasonably accurate shear strength predictions for selected experiments taken from the literature.


2021 ◽  
Vol 13 (13) ◽  
pp. 7498
Author(s):  
Tan Li ◽  
Jianzhuang Xiao

Concrete made with large-size recycled aggregates is a new kind of recycled concrete, where the size of the recycled aggregate used is 25–80 mm, which is generally three times that of conventional aggregate. Thus, its composition and mechanical properties are different from that of conventional recycled concrete and can be applied in large-volume structures. In this study, recycled aggregate generated in two stages with randomly distributed gravels and mortar was used to replace the conventional recycled aggregate model, to observe the internal stress state and cracking of the large-size recycled aggregate. This paper also investigated the mechanical properties, such as the compressive strength, crack morphology, and stress–strain curve, of concrete with large-size recycled aggregates under different confining pressures and recycled aggregate incorporation ratios. Through this research, it was found that when compared with conventional concrete, under the confining pressure, the strength of large-size recycled aggregate concrete did not decrease significantly at the same stress state, moreover, the stiffness was increased. Confining pressure has a significant influence on the strength of large-size recycled aggregate cocrete.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Adilson C. Paula Junior ◽  
Cláudia Jacinto ◽  
Thaís M. Oliveira ◽  
Antonio E. Polisseni ◽  
Fabio M. Brum ◽  
...  

The search for environmental preservation and conservation of natural resources gives rise to new concepts and viable technical solutions on the path to sustainable development. In this context, this study’s main objective is to analyse the influence of recycled concrete aggregates (RCAs) on the development of pervious concrete, whose use as a floor covering represents an excellent device to mitigate the urban soil sealing phenomena. For this, mechanical and hydraulic tests were carried out, in addition to microstructural analyses and the assessment of its environmental performance. The results obtained were compared to reference studies also involving the incorporation of recycled aggregates. A pilot-scale case study was conducted, involving a parking space lined with pervious concrete moulded “in situ”. In laboratory tests, permeability coefficients and mechanical strengths compatible with the literature and above the normative limit for light traffic were found. The case study demonstrated higher permeability than in the laboratory, but the flexural strength was lower, being indicated only for pedestrian traffic. The environmental assessment showed that the RCA represents a positive contribution to the environmental performance of pervious concrete. Still, attention should be given to the recycled aggregate transport distance between the concrete plant and the RCA treatment plant.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2312
Author(s):  
Xin Liang ◽  
Fang Yan ◽  
Yuliang Chen ◽  
Huiqin Wu ◽  
Peihuan Ye ◽  
...  

In order to study the mechanical properties of recycled aggregate concrete (RAC) at different ages, 264 standard cubes were designed to test its direct shear strength and cube compressive strength while considering the parameters of age and recycled aggregate replacement ratio. The failure pattern and load–displacement curve of specimens at direct shearing were obtained; the direct shear strength and residual shear strength were extracted from the load–displacement curves. Experimental results indicate that the influence of the replacement ratio for the front and side cracks of RAC is insignificant, with the former being straight and the latter relatively convoluted. At the age of three days, the damaged interface between aggregate and mortar is almost completely responsible for concrete failure; in addition to the damage of coarse aggregates, aggregate failure is also an important factor in concrete failure at other ages. The load–displacement curve of RAC at direct shearing can be divided into elasticity, elastoplasticity, plasticity, and stabilization stages. The brittleness of concrete decreases with its age, which is reflected in the gradual shortening of the elastoplastic stage. At 28 days of age, the peak direct shear force increases with the replacement ratio, while the trend is opposite at ages of 3 days, 7 days, and 14 days, respectively. The residual strength of RAC decreases inversely to the replacement ratio, with the rate of decline growing over time. A two-parameter RAC direct shear strength calculation formula was established based on the analysis of age and replacement rate to peak shear force of RAC. The relationship between cube compressive strength and direct shear strength of recycled concrete at various ages was investigated.


Author(s):  
Sharifah Salwa Mohd Zuki ◽  
◽  
Shahiron Shahidan ◽  
Shivaraj Subramaniam ◽  
◽  
...  

This paper discussed the recycled aggregates produced from construction and demolition waste and their utilization in concrete construction. Along with a brief overview of the engineering properties of recycled aggregates, the paper also summarizes the effect and use of recycled aggregates on the properties of fresh and hardened concrete. The recycled aggregates were treated with epoxy resin to reduce the water absorptions with different percentages of resin such as 0%, 25%, 50%, 75%, and 100%. Epoxy resin is widely used in recent years owing to the enhancing of mechanical and durability of the concrete. This research also showed, recycled aggregate concrete are close proximity to normal concrete in terms of split tensile strength, compression strength and wet density. The low usage of resin was obtained good strength concrete compared to high percentage contained treated aggregates due to low bonding between material.


2019 ◽  
Vol 26 (3) ◽  
pp. 37-42
Author(s):  
Ashtar S. Al-Luhybi

In the building process, the recycling of aggregates arising from building and demolition debris is one of the best alternatives to maintain the environment and the areas needed to bury these debris. It also helps to preserve natural concrete sources from depletion efficiently. The use of recycled aggregates in new concrete manufacturing, however, leads to a decrease in concrete\\\’s strength characteristics. This reduction rises with the rise in the percentage of recycled aggregates used in concrete, which has caused many researchers to undertake many researches on how to enhance the characteristics of recycled aggregate-containing concrete. This paper presents several studies that examined the effect of adding steel fiber to improve the properties of concrete containing a coarse recycled aggregate.


2019 ◽  
Vol 281 ◽  
pp. 01017
Author(s):  
Frédéric Grondin ◽  
Menghuan Guo ◽  
Emmanuel Rozière ◽  
Ahmed Loukili

In the sustainable development context, the use of demolition waste increases in the building industry. Recycled aggregates from the demolition of concrete structures are then mixed in new concrete. Furthermore, the performance evaluation of a these recycled aggregate concrete (RAC) mix is not only limited to the determination of its conventional mechanical properties. The failure risk of concrete elements in structures made from RAC needs a comprehensive analysis. For that, a study on the fracture process of RAC has been performed and compared with that of normal concrete of the same structural class. Acoustic emission technique and digital correlation method have been used to follow the cracking process. Also, a new modelling approach for the fracture behaviour of RAC at the mesoscopic scale has been developed. It has taken into account the old attached mortar surrounding recycled aggregates. Results show that RAC has a more brittle behaviour than ordinary concrete and the numerical analysis shows that cracks growth through the recycled aggregates which have brittleness behaviour.


Sign in / Sign up

Export Citation Format

Share Document