scholarly journals Research on nonlinear model and fuzzy fractional order PIλDμ control of air suspension system

Author(s):  
Jingyue Wang ◽  
Kun Lv ◽  
Haotian Wang ◽  
Sheng Guo ◽  
Junnian wang

To improve the ride comfort of wheeled armored vehicles, air springs are used. To describe the vehicle motion more accurately, a nine-degree-of-freedom air suspension system for the whole vehicle was established, and its equations of motion were derived. Through theoretical analysis of the stiffness characteristics and forces on the air springs, the nonlinear restoring force was obtained as a cubic polynomial of the air spring displacement. The simulation results obtained by fitting the polynomial and radial basis function curves with MATLAB/Simulink software are consistent with the actual test results, thus verifying the correctness of the nonlinear air spring polynomial model. Finally, a fuzzy fractional order PIλDμ controller is designed and simulated for the vehicle-seat-body model in terms of wheel dynamic load, suspension dynamic deflection, body acceleration, and other indicators. The simulation results show that the fuzzy fractional order PIλDμ Proportion Integral Differential (PID) control strategy has better overall performance than the PID control strategy, fuzzy control strategy, and fuzzy PID control strategy.

2013 ◽  
Vol 380-384 ◽  
pp. 528-531 ◽  
Author(s):  
Xiao Feng Liu ◽  
Xin Hua Xie

Relative to the passive suspension, automotive active suspension car driving more ride comfort and stability, has a vital role to further improve the performance of the vehicle. For such a typically complex active suspension system research, the key issue is the selection of control strategies. The problems in the currently active suspension control strategy, the principle of a simple, effective, this paper, a single neuron PID control strategy used in the automotive active suspension system. The results show that compared with other control strategies, single neuron PID control strategy is reliable, has more advantages.


2019 ◽  
Vol 293 ◽  
pp. 01002
Author(s):  
Mei Li ◽  
Dezhi Wang ◽  
Shaobo Zhang ◽  
Silong Tan ◽  
Yingcong Ji

In order to study a new type of air suspension system, the quarter dynamic model of semi-active suspension system is established based on FuzzPID control theory; At the same time, a test bench is established. Through analyzing the data which got in simulation and test, the result show that the performance of air spring parameters has obvious improvement on the acceleration of the vehicle body. Butthe performance on the deflection of the suspension and the dynamic tire load is not the same. By changing the frequency of sinusoidal excitation, the specific performance of ride comfort parameters in different sinusoidal excitation has been studied


2010 ◽  
Vol 43 ◽  
pp. 57-61
Author(s):  
Mei Li ◽  
Zhong Xin Li ◽  
Ji Wei Guo ◽  
Xu Feng Shen

An electronically controlled air suspension system has been introduced to improve the ride performance of a vehicle. A fuzzy controller is designed on the basis of fuzzy logic control strategy which is applied to control the air suspension system. The vibration reduction of a coach with the suspension system is achieved by controlling the stiffness of the air spring and the damping of a switchable damper. A nonlinear dynamic model of a half-vehicle is used to simulate traditional air suspension and the one with fuzzy controller for ride performance respectively on road input. The results indicate that implementing a control strategy can improve the ride performance of the coach on the condition of normal road.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2011 ◽  
Vol 48-49 ◽  
pp. 331-334
Author(s):  
Cheng Long Gong ◽  
Jing Zhuo Wang ◽  
Yuan Feng

This paper introduces a computer control network system which can control sintering process of four PTFE molding furnaces accurately. System in-out signals such as sintering temperature, on-off signals of dial motor and aeration motor were connected to Lonworks via net nodes, and network variables were used to construct a configuration and interlinkage between the net nodes. We chose a combined-control strategy in which On-off control or Fuzzy-control or Fuzzy-PID control strategy were selected automatically, so the needs to sintering time, cooling speed, steady-state precision etc were accurately achieved.


2020 ◽  
Vol 10 (12) ◽  
pp. 4320 ◽  
Author(s):  
Dou Guowei ◽  
Yu Wenhao ◽  
Li Zhongxing ◽  
Amir Khajepour ◽  
Tan Senqi

This paper presents a control method based the lateral interconnected air suspension system, in order to improve the road handling of vehicles. A seven-DOF (Degree of freedom) full-vehicle model has been developed, which considers the features of the interconnected air suspension system, for example, the modeling of the interconnected pipelines and valves by considering the throttling and hysteresis effects. On the basis of the well-developed model, a sliding mode controller has been designed, with a focus on constraining and minimizing the roll motion of the sprung mass caused by the road excitations or lateral acceleration of the vehicle. Moreover, reasonable road excitations have been generated for the simulation based on the coherence of right and left parts of the road. Afterwards, different simulations have been done by applying both bumpy and random road excitations with different levels of roughness and varying vehicle lateral accelerations. The simulation results indicate that the interconnected air suspension without control can improve the ride comfort, but worsen the road handling performance in many cases. However, by applying the proposed sliding mode controller, the road handling of the sprung mass can be improved by 20% to 85% compared with the interconnected or non-interconnected mode at a little cost of comfort.


2019 ◽  
Vol 39 (3) ◽  
pp. 787-802 ◽  
Author(s):  
Mingde Gong ◽  
Hao Chen

A semi-active suspension variable damping control strategy for heavy vehicles is proposed in this work. First, a nine-degree-of-freedom model of a semi-active suspension of heavy vehicles and a stochastic road input mathematical model are established. Second, using a 1/6 vehicle as an example, a semi-active suspension system with damping that can be adjusted actively is designed using proportional relief and throttle valves. The damping dynamic characteristics of the semi-active suspension system and the time to establish the damping force are studied through a simulation. Finally, a variable damping control strategy based on an actuator motion state is proposed to adjust the damping force of the semi-active suspension system actively and therefore satisfy the vibration reduction requirements of different roads. Results show that the variable damping control suspension can substantially improve vehicle ride comfort and handling stability in comparison with a passive suspension.


Sign in / Sign up

Export Citation Format

Share Document