Thinking through silicon: Cables and servers as epistemic infrastructures

2020 ◽  
pp. 146144482097719
Author(s):  
Luke Munn

Data centers and undersea cables allow information to be transmitted, stored, and processed. Yet, more than passively housing knowledge, information infrastructures actively shape knowledge. Infrastructures facilitate a certain use case, privileging some forms of knowledge while ignoring others. And infrastructures are material investments by states or corporations at a particular site, solidifying their knowledge-production, while marginalizing alternatives. These conditions are exemplified by two sites in Tseung Kwan O, Hong Kong. The TKO Express is a private undersea cable that offers its clients high-speed connectivity between financial centers, supporting the “fast knowledge” of finance and trading, while ignoring slower or more social forms of intelligence. The TKOIE industrial estate allocated land to a data center rather than a community center, prioritizing the production of corporate, proprietary knowledge over local and communal knowledge. The article reworks the concept of epistemic infrastructures to stress how such facilities influence what can be known and what remains unknown.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anjaney Nigam ◽  
Bharat Mishra ◽  
Prabhat Patel

Abstract Data centers are facing huge bottlenecks due to the emergence of high-speed data applications. To meet speed requirements, it is proposed to shift the current technologies toward optical communication-enabled data center (DC) devices. This paper discusses the recently proposed optical switch designs and proposes a novel switch design for optical DCs. The architectures proposed in the literature are compared in terms of notable parameters. Finally, proposed switch performance is measured in the network using Monte Carlo simulation and results are obtained in terms of packet loss probability, under a random traffic model while considering both nonperiodized and prioritized packets.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 77
Author(s):  
Lin Jiang ◽  
Lianshan Yan ◽  
Anlin Yi ◽  
Yan Pan ◽  
Bo Zhang ◽  
...  

According to different transmission distances, application scenarios of a data center mainly include intra- and inter-data center optical interconnects. The intra-data center optical interconnect is considered as a few kilometers optical interconnect between servers and racks inside a data center, which accounts for nearly 80% of data traffic of a data center. The other one, inter-data center optical interconnect, is mainly applied in tens of kilometers data transmission among different data centers. Since data exchange in data centers generally occurs between many servers and racks, and a lot of transmitter and receiver components are required, optical interconnects become highly sensitive to component costs. In this paper, we firstly review the development and applications of mainstream transmitter components (e.g., VCSEL, DML, EML, MZM, and monolithic integrated transmitter) and receiver components (e.g., single-end photodetector, Kramers-Kronig receiver, Stokes vector receiver, and monolithic integrated receiver), which have been widely applied in short-reach transmission systems. Then, two types of integrated solutions including simplified detection scheme and transceiver integration scheme are presented in detail. Finally, we summarize and discuss the technological and component options for different transmission distances. We believe that monolithic integrated components, especially transceiver integration, will become a powerful solution for next-generation high-speed short-reach transmission systems.


Author(s):  
Chris Muller ◽  
Chuck Arent ◽  
Henry Yu

Abstract Lead-free manufacturing regulations, reduction in circuit board feature sizes and the miniaturization of components to improve hardware performance have combined to make data center IT equipment more prone to attack by corrosive contaminants. Manufacturers are under pressure to control contamination in the data center environment and maintaining acceptable limits is now critical to the continued reliable operation of datacom and IT equipment. This paper will discuss ongoing reliability issues with electronic equipment in data centers and will present updates on ongoing contamination concerns, standards activities, and case studies from several different locations illustrating the successful application of contamination assessment, control, and monitoring programs to eliminate electronic equipment failures.


2021 ◽  
pp. 108061
Author(s):  
Shan Huang ◽  
Dezun Dong ◽  
Zejia Zhou ◽  
Xiangke Liao

2017 ◽  
Vol 19 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Maria Anna Jankowska ◽  
Piotr Jankowski

The article presents the Idaho Geospatial Data Center (IGDC), a digital library of public-domain geographic data for the state of Idaho. The design and implementation of IGDC are introduced as part of the larger context of a geolibrary model. The article presents methodology and tools used to build IGDC with the focus on a geolibrary map browser. The use of IGDC is evaluated from the perspective of accessa and demand for geographic data. Finally, the article offers recommendations for future development of geospatial data centers.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


Author(s):  
Amip J. Shah ◽  
Van P. Carey ◽  
Cullen E. Bash ◽  
Chandrakant D. Patel

Data centers today contain more computing and networking equipment than ever before. As a result, a higher amount of cooling is required to maintain facilities within operable temperature ranges. Increasing amounts of resources are spent to achieve thermal control, and tremendous potential benefit lies in the optimization of the cooling process. This paper describes a study performed on data center thermal management systems using the thermodynamic concept of exergy. Specifically, an exergy analysis has been performed on sample data centers in an attempt to identify local and overall inefficiencies within thermal management systems. The development of a model using finite volume analysis has been described, and potential applications to real-world systems have been illustrated. Preliminary results suggest that such an exergy-based analysis can be a useful tool in the design and enhancement of thermal management systems.


2020 ◽  
pp. 80-84
Author(s):  
Pongkwan Lassus

The Makkasan Train Factory, opened 110 years ago, is the first industrial estate in Thailand and used to be the biggest hub for train production in Southeast Asia. Nowadays, this huge land of 80 hectares, with direct access from the Savarnabhumi airport rail link, is considered a golden land right in the business center of Bangkok, that attracts real estate investors. A third of the land set aside at the end of last year for the development of a mixed use commercial project as a part of the High Speed Train project. As this land is the last big area of public land in the capital, civic groups for urban heritage conservation and the environment tried to point out its tangible and intangible heritage value hoping that there would be a proper master plan to preserve these values for future generations.


Author(s):  
Kamran Nazir ◽  
Naveed Durrani ◽  
Imran Akhtar ◽  
M. Saif Ullah Khalid

Due to high energy demands of data centers and the energy crisis throughout the world, efficient heat transfer in a data center is an active research area. Until now major emphasis lies upon study of air flow rate and temperature profiles for different rack configurations and tile layouts. In current work, we consider different hot aisle (HA) and cold aisle (CA) configurations to study heat transfer phenomenon inside a data center. In raised floor data centers when rows of racks are parallel to each other, in a conventional cooling system, there are equal number of hot and cold aisles for odd number of rows of racks. For even number of rows of racks, whatever configuration of hot/cold aisles is adopted, number of cold aisles is either one greater or one less than number of hot aisles i.e. two cases are possible case A: n(CA) = n(HA) + 1 and case B: n(CA) = n(HA) − 1 where n(CA), n(HA) denotes number of cold and hot aisles respectively. We perform numerical simulations for two (case1) and four (case 2) racks data center. The assumption of constant pressure below plenum reduces the problem domain to above plenum area only. In order to see which configuration provides higher heat transfer across servers, we measure heat transfer across servers on the basis of temperature differences across racks, and in order to validate them, we find mass flow rates on rack outlet. On the basis of results obtained, we conclude that for even numbered rows of rack data center, using more cold aisles than hot aisles provide higher heat transfer across servers. These results provide guidance on the design and layout of a data center.


Sign in / Sign up

Export Citation Format

Share Document