Effect of carbon nanotube-reinforced magneto-electro-elastic facings on the pyrocoupled nonlinear deflection of viscoelastic sandwich skew plates in thermal environment

Author(s):  
Vinyas Mahesh

This work presents a finite-element-based numerical formulation to evaluate the nonlinear deflections of magneto-electro-elastic sandwich skew plates with a viscoelastic core and functionally graded carbon nanotube-reinforced magneto-electro-elastic face sheets. Meanwhile, the proposed formulation accommodates the geometrical skewness as well. The magneto-electro-elastic sandwich skew plate is operated in the thermal environment and subjected to various multiphysics loads, including electric and magnetic loads. The viscoelastic core is modelled via the complex modulus approach. Two different forms of viscoelastic cores, such as Dyad 606 and EC 2216, are considered in this study. Also, different thickness configurations of core and facing arrangements are taken into account. The plate kinematics is presumed through higher-order shear deformation theory, and von Karman's nonlinear strain displacement relations are incorporated. The global equations of motion are arrived at through the total potential energy principle and solved via the direct iterative method. Special attention is paid to assessing the influence of pyroeffects, coupling fields and electromagnetic boundary conditions on the nonlinear deflections of magneto-electro-elastic sandwich plates working in the thermal environment and subjected to electromagnetic loads, which is the first of its kind. Also, parametric studies dealing with the skew angles, carbon nanotube distributions and volume fractions, thickness ratio, and aspect ratio have been discussed. The results of this work are believed to be unique and serve as a guide for the design engineers towards developing sophisticated smart structures for various engineering applications.

2020 ◽  
pp. 107754632096622
Author(s):  
Meisam Shakouri ◽  
Mohammad Reza Permoon ◽  
Abdolreza Askarian ◽  
Hassan Haddadpour

Natural frequency and damping behavior of three-layer cylindrical shells with a viscoelastic core layer and functionally graded face layers are studied in this article. Using functionally graded face layers can reduce the stress discontinuity in the face–core interface that causes a catastrophic failure in sandwich structures. The viscoelastic layer is expressed using a fractional-order model, and the functionally graded layers are defined by a power law function. Assuming the classical shell theory for functionally graded layers and the first-order shear deformation theory for the viscoelastic core, equations of motion are derived using Lagrange’s equation and then solved via Rayleigh–Ritz method. The obtained results are validated with those in the literature, and finally, the effects of some geometrical and material parameters such as length-to-radius ratio, functionally graded properties, radius and thickness of viscoelastic layer on the natural frequency, and loss factor of the system are considered, and some conclusions are drawn.


Author(s):  
Pabitra Maji ◽  
Mrutyunjay Rout ◽  
Amit Karmakar

Finite element procedure is employed to analyze the free vibration characteristics of rotating functionally graded carbon nanotubes reinforced composite conical shell with pretwist under the thermal environment. In this paper, four types of carbon nanotube grading are considered, wherein the distribution of carbon nanotubes are made through the thickness direction of the conical shell. An eight-noded isoparametric shell element is used in the present formulation to model the panel based on the first-order shear deformation theory. For moderate rotational speeds, the generalized dynamic equilibrium equation is derived from Lagrange’s equation of motion, neglecting the Coriolis effect. The finite element code is developed to investigate the effect of twist angle, temperature, aspect ratio, and rotational speed on natural frequencies. The mode shapes of a carbon nanotube reinforced functionally graded conical shell at different twist angles and rotational speeds are also presented.


2021 ◽  
Author(s):  
Xu Chen ◽  
Jing-Lei Zhao ◽  
Gui-Lin She ◽  
Yan Jing ◽  
Huayan Pu ◽  
...  

Abstract In this paper, the nonlinear free vibration responses of functionally graded nanocomposite fluid-conveying tube reinforced by single-walled carbon nanotubes (SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in the thickness direction of the tube forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. A higher-order shear deformation theory and Hamilton’s variational principle are employed to derive the motion equations incorporating the thermal and fluid effects. A two-step perturbation method is implemented to obtain the closed-form asymptotic solution for these nonlinear partial differential equations. The nonlinear frequency under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the flow velocity, environment temperature, geometrical ratios and carbon nanotube volume fraction on the nature frequency.


2017 ◽  
Vol 09 (04) ◽  
pp. 1750046 ◽  
Author(s):  
Kulmani Mehar ◽  
Subrata Kumar Panda ◽  
Bhumesh Kumar Patle

The free vibration and flexural behavior of functionally graded carbon nanotube reinforced composite curved panel is investigated under uniform and linear thermal environment. The carbon nanotube reinforced composite curved panel has been modeled mathematically based on the higher-order shear deformation theory. The nanotube properties are assumed to be depended on the temperature and graded in the thickness direction using different grading rules. The governing equations for the static and vibration analysis of the functionally graded carbon nanotube reinforced composite panel are obtained using the variational method. Further, isoparametric finite element steps are implemented for the discretization of the governing equation and solved numerically via a specialized computer code developed in MATLAB environment. The rate of convergence and the validity of the presently developed numerical model have been checked. Finally, the effect of different geometrical and material parameters (thickness ratios, support conditions, volume fractions, thermal load, aspect ratios, and type of grading) on the free vibration and flexural behavior of functionally graded carbon nanotube reinforced composite are examined and discussed detail under thermal environment.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Roshan Lal ◽  
Chinika Dangi

Abstract In this work, buckling and vibration characteristics of two-dimensional functionally graded (FG) nanobeam of nonuniform thickness subjected to in-plane and thermal loads have been analyzed within the frame work of Timoshenko beam theory. The beam is tapered by linear variation in thickness along the length. The temperature-dependent material properties of the beam are varying along thickness and length as per a power-law distribution and exponential function, respectively. The analysis has been presented using Eringen’s nonlocal theory to incorporate the size effect. Hamilton’s energy principle has been used to formulate the governing equations of motion. These resulting equations have been solved via generalized differential quadrature method (GDQM) for three combinations of clamped and simply supported boundary conditions. The effect of in-plane load together with temperature variation, nonuniformity parameter, gradient indices, nonlocal parameter, and slenderness ratio on the natural frequencies is illustrated for the first three modes of vibration. The critical buckling loads in compression have been computed by putting the frequencies equal to zero. A significant contribution of in-plane load on mechanical behavior of two-directional functionally graded nanobeam with nonuniform cross section has been noticed. Results are in good accordance.


Author(s):  
Ming Hui Yao ◽  
Yan Niu ◽  
Wei Zhang

In this paper, the nonlinear dynamics of a simply supported functionally graded materials (FGM) conical panel with different forms of initial imperfections is investigated. The conical panel is subjected to the simple harmonic excitation along the radial direction and the parametric excitation in the meridian direction. The small initial geometric imperfection of the conical panel is expressed by the form of the Cosine functions. According to a power-law distribution, the effective material properties are assumed to be graded along the thickness direction. Based on the first-order shear deformation theory and von Karman type nonlinear geometric relationship, the nonlinear equations of motion are established by using the Hamilton principle. The nonlinear partial differential governing equations are truncated by Galerkin’s method to obtain the ordinary differential equations along the radial displacement. The effects of imperfection types, half-wave numbers and amplitudes on the dynamic behaviors are studied by numerical simulation. Maximum Lyapunov exponents, bifurcation diagrams, time histories and phase portraits are obtained to show the dynamic response.


2015 ◽  
Vol 22 (1) ◽  
pp. 37-55 ◽  
Author(s):  
Parviz Malekzadeh ◽  
Mojtaba Dehbozorgi ◽  
Seyyed Majid Monajjemzadeh

AbstractThe vibration behavior of functionally graded carbon nanotube (CNT)-reinforced composite (FG-CNTRC) plates under a moving load is investigated based on the first-order shear deformation theory of plates using the finite element method. An embedded single-walled CNT (SWCNT) in the polymer matrix and its surrounding interphase is replaced with an equivalent fiber to obtain the effective mechanical properties of the CNT/polymer composite plates using the Eshelby-Mori-Tanaka micromechanical model. The equations of motion of plate elements are derived by utilizing Hamilton’s principle. Newmark’s time integration scheme is employed to discretize the equations of motion in the temporal domain. The convergence of the method is numerically demonstrated and its accuracy is shown by performing comparison studies with existing solutions for the free vibration and static analysis of FG-CNTRC plates and also the exact solution of isotropic plates under a moving load. Then, the numerical results are presented to study the effects of various profiles of the CNT distribution, which includes both symmetric and asymmetric distributions, the velocity of the moving load, and thickness-to-length and aspect ratios together with boundary conditions on the dynamic characteristic of the FG-CNTRC plate under a moving load.


2021 ◽  
Vol 8 (4) ◽  
pp. 691-704
Author(s):  
M. Janane Allah ◽  
◽  
Y. Belaasilia ◽  
A. Timesli ◽  
A. El Haouzi ◽  
...  

In this work, an implicit algorithm is used for analyzing the free dynamic behavior of Functionally Graded Material (FGM) plates. The Third order Shear Deformation Theory (TSDT) is used to develop the proposed model. In this contribution, the formulation is written without any homogenization technique as the rule of mixture. The Hamilton principle is used to establish the resulting equations of motion. For spatial discretization based on Finite Element Method (FEM), a quadratic element with four and eight nodes is adopted using seven degrees of freedom per node. An implicit algorithm is used for solving the obtained problem. To study the accuracy and the performance of the proposed approach, we present comparisons with literature and laminate composite modeling results for vibration natural frequencies. Otherwise, we examine the influence of the exponent of the volume fraction which reacts the plates "P-FGM" and "S-FGM". In addition, we study the influence of the thickness on "E-FGM" plates.


Author(s):  
Ehsan Arshid ◽  
Ali Kiani ◽  
Saeed Amir

The vibration analysis of an annular plate made up of functionally graded magneto-electro-elastic materials subjected to multi physical loads is presented. The plate is in thermal environment and temperature is distributed non-uniformly in its thickness direction. In addition, the plate is assumed moderately thick, the material properties vary through the thickness, and the exact neutral surface position is determined and took into account. According to Hamilton’s principle and the first-order shear deformation theory, the governing motion equations are extracted. Numerical results for various boundary conditions are obtained via the generalized differential quadrature method and are validated in simpler states with those of the literature. The effects of different parameters such as material property gradient index, multi physical loads, temperature variations, boundary conditions and geometric specifications of the plate on the natural frequencies and mode shapes are investigated. Temperature changes have little effect on the natural frequencies and the effect of electric potential on them is opposite of magnetic one. In other words, by increasing the magnetic potential, the rigidity of the plate increases too, and the frequency increases. The results of this study are useful to design more efficient sensors and actuators used in the smart or intelligent structures.


2020 ◽  
Vol 12 (07) ◽  
pp. 2050072
Author(s):  
Vu Hoai Nam ◽  
Nguyen-Thoi Trung ◽  
Nguyen Thi Phuong ◽  
Vu Minh Duc ◽  
Vu Tho Hung

This paper deals with the nonlinear large deflection torsional buckling of functionally graded carbon nanotube (CNT) orthogonally reinforced composite cylindrical shells surrounded by Pasternak’s elastic foundations with the thermal effect. The shell is made by two layers where the polymeric matrix is reinforced by the CNTs in longitudinal and circumferential directions for outer and inner layers, respectively. The stability equation system is obtained by combining the Donnell’s shell theory, von Kármán nonlinearity terms, the circumferential condition in average sense and three-state solution form of deflection. The critical torsional buckling load, postbuckling load-deflection and the load-end shortening expressions are obtained by applying the Galerkin procedure. The effects of temperature change, foundation parameters, geometrical properties and CNT distribution law on the nonlinear behavior of cylindrical shell are numerically predicted. Especially, the effect of orthogonal reinforcement in comparison with longitudinal and circumferential reinforcement on the torsional buckling behavior of shells is observed.


Sign in / Sign up

Export Citation Format

Share Document