Joining of hybrid semi-finished products from sheet metal by orbital forming

Author(s):  
Andreas Hetzel ◽  
Michael Lechner ◽  
Marion Merklein

Contrary demands like a reduction of carbon dioxide emissions and an increase in functionality are facing the manufacturing industry with growing challenges. When processing functional components, like synchronizer rings, conventional process chains, like shearing and subsequent joining, are reaching their limits due to an increased complexity of the components and a lack in efficiency, referring to the long process time. To meet these challenges, the strategy of lightweight construction combines the application of lightweight materials with efficient manufacturing processes and an innovative product design. One possibility within lightweight construction is the utilization of load-adapted hybrid components, featuring different material strength classes. In previous research, the process of orbital forming is used to manufacture semi-finished products with a varying thickness profile due to the specific radial material flow. This material flow should now be used to realize a permanent joint between materials of two different strength levels. Therefore, the process of orbital forming is modified to manufacture hybrid semi-finished products from a dual-phase steel DP600 and a naturally rigid aluminum alloy EN AW 5754, both with an initial thickness of 2.0 mm. Different joint geometries are cut by laser into a steel ring and the part is coaxially positioned around a basic aluminum disc inside a die and subsequently formed. The joint is investigated regarding the geometrical and mechanical properties, comparing a radial cross-section and the micro hardness distribution. In order to reveal the potential of orbital forming for a combined forming and joining operation, the axial as well as the peeling strength of the multi-material components are investigated and evaluated.

Author(s):  
Sebastian Wernicke ◽  
Peter Sieczkarek ◽  
Joshua Grodotzki ◽  
Soeren Gies ◽  
Nooman Ben Khalifa ◽  
...  

The manufacturing of gear elements by forming offers advantages regarding the resulting mechanical properties of the functional components. One possible approach is offered by the incremental sheet-bulk metal forming of gears using a linear motion punch. This method is highly flexible in terms of shape and position of the functional elements to be produced, but inefficient from an economical point of view due to the high process time. This paper presents a new sheet-bulk gear forming process using rotating tools in order to speed up the manufacturing process of load-adapted gears. Here, different concepts with rotating tools being synchronized and non-synchronized to the workpiece are investigated to form high-strength, load-adapted gears made of bainitic steel BS600. The focus is on the analysis of the occurring material flow which is examined by means of finite element analysis and microstructural investigations to ensure the manufacture of fully functional geared components by this sheet-bulk metal forming process.


Author(s):  
Soundrapanidan Eswaran ◽  
◽  
Vivekkumar Panneerselvam ◽  

In additive manufacturing process, wire arc additive manufacturing process (WAAM) is a technique which can produce a metal 3D printed part. In Industries product are produced by wasting one third of its material, from this process time consumption and material wastage is more comparing in Subtractive Manufacturing over Additive Manufacturing. Additive Manufacturing stepped from 1925 in manufacturing industry and it has gained its remarkable growth in past few decades, as of now metal 3D oriented parts have come to play a major role in aerospace industry. This research work focused on Gas Metal Arc Welding (GMAW) welding. It has high deposition rate, ultimate build volume and good structural integrity compare with other additive manufacturing process. MACH3 controller is used to control the welding torch motion for addition of material by 3 axis movement (X, Y and Z). To identify the correct parameters for metal part we have done numbers of samples by changing values in the MIG machine from that we finalize the three parameters through visualizes on the printed materials after that a wall like structure is built and post processing like cutting the materials from base plate, grinding the uneven surface on printed materials. The printed materials are ready for material testing like bead geometry analysis of various parameter and tensile testing to identify the printed material strength, elongation, stress and strain.


2018 ◽  
Vol 190 ◽  
pp. 13003 ◽  
Author(s):  
Marion Merklein ◽  
Maria Löffler ◽  
Daniel Gröbel ◽  
Johannes Henneberg

Highly-integrated and closely-tolerated functional components can be produced by sheet-bulk metal forming which is the application of bulk forming operations on sheet metals. These processes are characterized by a successive and/or simultaneous occurrence of different load conditions such as stress and strain states which reduce the geometrical accuracy of the functional elements. Thus, one main challenge within sheet-bulk metal forming is the identification of methods to control the material flow and thus to improve the product quality. One suitable approach is to control the material flow by local modifications of the tribological conditions. Within this study requirements regarding the needed adaption of the tribological conditions for a specific sheet-bulk metal forming process were defined by numerical investigations. The results reveal that a local increase of the friction leads to an improved die filling of the functional elements. Based on these results abrasive blasting as a method to modify the tool surface and thus influencing the tribological behaviour was investigated. For the determination of the tribological mechanism of blasted tool surfaces, the influence of different blasting media as well as blasting pressures on the surface integrity and the friction were determined. The correlations between surface properties and friction conditions were used to derive the mechanisms of blasted tool surfaces.


2020 ◽  
Vol 8 (6) ◽  
pp. 4070-4077

Injection molding is one of the very significant methodologies in the plastic manufacturing industry. Production of any shape in the injection molding, mold with cavity must require. For this mold making three phases were involved in this project starting from design, analysis, manufacturing respectively. The objective of this project is to introduce detailed steps on design mold and using the simulation software to analyze the material flow, temperature and pressure characteristics of the product. The product designed and analyzed for this project is SAFE HOLDER and CAM. The manufacturing of mold is done by using advanced machinery such as CNC. The design and analysis of this product and mold were made by the designing analysis software CATIA V5, ANSYS 15.0, which is then stimulated by the use of Fluid Flow (Fluent) tool. This project was very useful in knowing the fluid characteristic behavior subjected to flowing inside the mold and also observed the variation of values with respect to given values at each stage. In this project, the analysis performed with taking polypropylene as a fluid from propylene polymer and steel as solid material for the die with inlet values are 230℃ temperature and 15m/s velocity.


2019 ◽  
Vol 6 ◽  
pp. 10 ◽  
Author(s):  
Marion Merklein ◽  
Maria Löffler ◽  
Daniel Gröbel ◽  
Johannes Henneberg

Highly integrated and closely tolerated functional components can be produced by sheet-bulk metal forming which is the application of bulk forming operations on sheet metal. These processes are characterized by a successive and/or simultaneous occurrence of different load conditions which reduce the geometrical accuracy of the parts. One challenge within sheet-bulk metal forming is the identification of methods to control the material flow to improve the product quality. A suitable approach is the local modification of the tribological conditions. Within this study, requirements regarding the needed adaption of the tribological system for a specific process were defined by numerical investigations. The results reveal that a local increase of the friction leads to an improved geometrical accuracy. Based on these results, abrasive blasting as a method to modify the tool surface and thus influencing the tribological behaviour was investigated. For the determination of the tribological mechanism of blasted tool surfaces, the influence of different blasting media as well as blasting pressures on the surface integrity and the friction were determined. Additionally, the functional stability of a modification was investigated. Finally, the correlations between surface properties and friction conditions were used to derive the mechanisms of blasted tool surfaces.


2012 ◽  
Vol 430-432 ◽  
pp. 1241-1247 ◽  
Author(s):  
Yuji Kotani ◽  
Shunsuke Kanai ◽  
Hisaki Watari

In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1-2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.


2015 ◽  
Vol 794 ◽  
pp. 81-88 ◽  
Author(s):  
Maria Löffler ◽  
Daniel Groebel ◽  
Ulf Engel ◽  
Kolja Andreas ◽  
Marion Merklein

Due to current ecological and economic developments there is a growing demand for functional components with complex and closely tolerated geometrical features. Conventional sheet and bulk metal forming operations leads to products which are often limited in their geometrical and functional variety. A promising approach is the process-class sheet-bulk metal forming (SBMF). SBMF is characterised by the application of bulk and sheet forming operations on sheet metals [1]. This combination leads to locally and temporally varying load conditions regarding stress as well as strain states. In order to get high quality parts, controlling the material flow is of major importance. Modified Surfaces, so-called tailored surfaces represent an innovative approach to control the material flow. The objective of the current study is the experimental investigation of the effectiveness of locally adapted tribological conditions using workpiece-and tool-sided tailored surfaces within SBMF processes. The study has shown that the local adaption of workpiece and tool surface increased the heights of functional elements. Thus, using locally adapted tribological conditions leads to an improvement of the quality of the produced gearing components. In a further step the influence of surface modifications on the surface properties of the manufactured components are analysed. Additionally, investigations regarding the wear behaviour of tool-sided surface adaptions lead to the assumption, that the effectiveness of tailored surfaces is reduced during the operating time of the tools.


2019 ◽  
Vol 8 (4) ◽  
pp. 10828-10832

Tyre segregation is one of the indispensible processes in tyre manufacturing industry. In tyre manufacturing industry various size of tyres are examined at segregation unit at a time. Till today the tyre segregation process is done manually which increases the manpower and process time. Tyre sorting is the process of segregating the tyres from different sizes. The sorting process is based on the Geometrical parameter (Inner Diameter, Outer Diameter, Outer Core button Design) of the tyre. This research work is aimed to automate the sorting process of different tyres using Image processing and IOT. This pioneering work depicts a prototype of segregation system which includes the image processing segment to categorize the type of tyres which are fitted for various vehicles. The proposed system consist of Conveyor system, Raspberry pi -3 controller, tyre collecting bin, Servo motor and Image processing camera. This system camera monitors the incoming various tyres from the conveyor, based on the geometrical parameters of the tyres they are segregated and placed in the appropriate tyre collecting bin and the same information is shared to the database through IOT. The proposed model is observed to be very efficient with its counterpart.


Sign in / Sign up

Export Citation Format

Share Document