Mathematical model of oil-containing water purification process in the volume of granulated media

Author(s):  
Valeriy Ivanovich Istomin ◽  
Elena Stanislavovna Solodova ◽  
Viktoria Valer’evna Khlebnikova

A mathematical model of oil-containing water purification process in the volume of granulated media is developed. On the basis of this model, the purifying ability of filtering unit with granulated coalescing media, which regenerates filtering media in the mode of pseudo liquefaction of granule without disassembling and replacement of filtering element, is studied. In the process of theoretical research, the physical model of oil-containing water purification process in the volume of granulated coalescing media is elaborated. The consistent patterns of the analysed process have gained further development. Due to these patterns, the factors which determine the effectiveneness of purification are established. After realization of the experiment plan for the first time, the mathematical model of a ship’s oil-containing water purification process in the volume of granulated media on the basis of the regression equation has been received. This model allows to calculate the rational constructive and operational parameters of the plant with granulated filter elements.

Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Suzana Uran ◽  
Matjaž Malok ◽  
Božidar Bratina ◽  
Riko Šafarič

Constructing a micro-sized microfluidic motor always involves the problem of how to transfer the mechanical energy out of the motor. The paper presents several experiments with pot-like microfluidic rotational motor structures driven by two perpendicular sine and cosine vibrations with amplitudes around 10 μm in the frequency region from 200 Hz to 500 Hz. The extensive theoretical research based on the mathematical model of the liquid streaming in a pot-like structure was the base for the successful real-life laboratory application of a microfluidic rotational motor. The final microfluidic motor structure allowed transferring the rotational mechanical energy out of the motor with a central axis. The main practical challenge of the research was to find the proper balance between the torque, due to friction in the bearings and the motor’s maximal torque. The presented motor, with sizes 1 mm by 0.6 mm, reached the maximal rotational speed in both directions between −15 rad/s to +14 rad/s, with the estimated maximal torque of 0.1 pNm. The measured frequency characteristics of vibration amplitudes and phase angle between the directions of both vibrational amplitudes and rotational speed of the motor rotor against frequency of vibrations, allowed us to understand how to build the pot-like microfluidic rotational motor.


2016 ◽  
Vol 10 (10) ◽  
pp. 133
Author(s):  
Mohammad Ali Nasiri Khalili ◽  
Mostafa Kafaei Razavi ◽  
Morteza Kafaee Razavi

Items supplies planning of a logistic system is one of the major issue in operations research. In this article the aim is to determine how much of each item per month from each supplier logistics system requirements must be provided. To do this, a novel multi objective mixed integer programming mathematical model is offered for the first time. Since in logistics system, delivery on time is very important, the first objective is minimization of time in delivery on time costs (including lack and maintenance costs) and the cost of purchasing logistics system. The second objective function is minimization of the transportation supplier costs. Solving the mathematical model shows how to use the Multiple Objective Decision Making (MODM) can provide the ensuring policy and transportation logistics needed items. This model is solved with CPLEX and computational results show the effectiveness of the proposed model.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012033
Author(s):  
V M Vishnevsky ◽  
K A Vytovtov ◽  
E A Barabanova ◽  
V E Buzdin

Abstract The mathematical model for reliability indicators calculation of the hybrid navigation system containing microwave and technical vision subsystems is proposed in this paper for the first time. The proposed method is based on the translation matrix concept of solutions to the Kolmogorov equation system and it allows us to obtain the mathematical expression of availability factor, downtime ratio, and other reliability indicators. Also the presented approach allows finding the reliability indicators for the cases of jump change of transition intensities caused by external influences. Besides the analytical method can be used for investigation of hybrid navigation system transient mode functioning. The results of the numerical calculations clearly demonstrated correctness of the proposed approach.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 200 ◽  
Author(s):  
Krzysztof Rajski ◽  
Jan Danielewicz ◽  
Ewa Brychcy

In the present work, the effects of different operating parameters on the performance of a gravity-assisted heat pipe-based indirect evaporative cooler (GAHP-based IEC) were investigated. The aim of the theoretical study is to evaluate accurately the cooling performance indicators, such as the coefficient of performance (COP), wet bulb effectiveness, and cooling capacity. To predict the effectiveness of the air cooler under a variety of conditions, the comprehensive calculation method was adopted. A mathematical model was developed to simulate numerically the heat and mass transfer processes. The mathematical model was validated adequately using experimental data from the literature. Based on the conducted numerical simulations, the most favorable ranges of operating conditions for the GAHP-based IEC were established. Moreover, the conducted studies could contribute to the further development of novel evaporative cooling systems employing gravity-assisted heat pipes as efficient equipment for transferring heat.


2019 ◽  
Vol 98 (3) ◽  
pp. 1795-1806 ◽  
Author(s):  
Sergii Skurativskyi ◽  
Grzegorz Kudra ◽  
Krzysztof Witkowski ◽  
Jan Awrejcewicz

Abstract The paper is devoted to the study of harmonically forced impacting oscillator. The physical model for oscillator is a cart on a guide connected to the support with springs and excited by the stepper motor. The support also is provided with limiter of motion. The mathematical model for this system is defined with the second-order piecewise smooth differential equation. Model’s nonlinearity is connected with the incorporation of dry friction and generalized Hertz contact law. Analyzing the classical Poincare sections and inter-impact sequences obtained experimentally and numerically, the bifurcations and statistical properties of periodic, multi-periodic, and chaotic regimes were examined. The development of impact-adding regime as a new nonlinear phenomenon when the forcing frequency varies was observed.


2018 ◽  
Vol 194 ◽  
pp. 01012
Author(s):  
Natalya Ivanova ◽  
Elena Bulba

For the first time, a mathematical model for the drying of woody biomass during conductive heating with localization of the evaporation front has been formulated. The processes of moisture removal during the filtration of steam through the porous structure of the material at an ambient temperature of Te = 373 K were considered. Humidity was varied (in the range from 6% to 40%) and dimensions of wood blanks (Rd = 0.0035 - 0.035 m). Based on the results of numerical simulation, the conditions and characteristics (evaporation rate Wisp, drying time τ dry) of the process of moisture removal from wood biomass are determined. The mathematical model allows to calculate the drying time, as well as the mass evaporation rate for different sizes of wood sample, humidity and temperature conditions.


2011 ◽  
Vol 50-51 ◽  
pp. 37-41
Author(s):  
Jian Fu Zhang ◽  
Zhi Jun Wu ◽  
Ping Fa Feng ◽  
Ding Wen Yu

The plastic-coated slideways have been widely used for form-generating movement in machine tools. Its dynamic behavior plays an important role in the vibration properties of the whole machine. In this work, according to the situation that researches on this subject were rather insufficient, a theoretical research was analyzed concerning the stiffness and damping characteristics of rectangle-shaped plastic-coated slideways. The mathematical model was firstly suggested especially based on the assembly of the saddle and worktable. Both stiffness and damping characteristics on vertical and horizontal directions were theoretically determined. To derive the governing motion equation of the slideway system, the carriage and rail were considered as rigid bodies and connected with a series of spring and damping elements at the joint face. Moreover, through the Lagrange’s approach, the frequencies of the carriage at vertical, pitching, yawing and rolling vibration mode were identified.


Author(s):  
S-C Yang

This paper presents a method for determining the mathematical model of an elbow mechanism with a convex tooth and a concave tooth. Based on this method, the mathematical model presents the meshing principles of a conical cutter meshed with a tooth that is either convex or concave. Using the developed mathematical models and the tooth contact analysis, kinematic errors are investigated according to the obtained geometric modelling of the designed gear meshing when assembly errors are present. The influence of misalignment on kinematic errors has been investigated. The goal of the current study is to investigate von-Mises stress for three teeth contact pairs. A structural load is assumed to act on a gear of the proposed mechanism. The von-Mises of the proposed gear is determined. The conical cutter used in the design and manufacture of the convex and concave gear is shown. For example, the proposed mechanism with a transmission ratio of 3:2 was determined with the aid of the proposed mathematical model. Using rapid prototyping and manufacturing technology, an elbow mechanism with a convex gear, a concave gear and a frame was designed. The RP primitives provide an actual full-size physical model that can be analysed and used for further development. Results from these mathematical models are applicable to the design of an elbow mechanism.


Sign in / Sign up

Export Citation Format

Share Document