scholarly journals Performance Evaluation of a Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 200 ◽  
Author(s):  
Krzysztof Rajski ◽  
Jan Danielewicz ◽  
Ewa Brychcy

In the present work, the effects of different operating parameters on the performance of a gravity-assisted heat pipe-based indirect evaporative cooler (GAHP-based IEC) were investigated. The aim of the theoretical study is to evaluate accurately the cooling performance indicators, such as the coefficient of performance (COP), wet bulb effectiveness, and cooling capacity. To predict the effectiveness of the air cooler under a variety of conditions, the comprehensive calculation method was adopted. A mathematical model was developed to simulate numerically the heat and mass transfer processes. The mathematical model was validated adequately using experimental data from the literature. Based on the conducted numerical simulations, the most favorable ranges of operating conditions for the GAHP-based IEC were established. Moreover, the conducted studies could contribute to the further development of novel evaporative cooling systems employing gravity-assisted heat pipes as efficient equipment for transferring heat.

Author(s):  
Dmitriy V. Guzei ◽  
Andrey V. Minakov ◽  
Vasiliy I. Panteleev ◽  
Maksim I. Pryazhnikov ◽  
Dmitriy V. Platonov ◽  
...  

The mathematical model of heat and mass transfer processes in the combustion chamber of diesel generator units with valve inductor generators has been developed. The mathematical model takes into account the actual geometry of the combustion chamber and the operating conditions of the diesel engine. A study of the main characteristics of a diesel generator in a wide range of modes of operation has been carried out. In addition to energy characteristics, environmental parameters have been considered


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4045
Author(s):  
Van Vu Nguyen ◽  
Szabolcs Varga ◽  
Vaclav Dvorak

The paper presented a mathematical assessment of selected refrigerants for the ejector cooling purpose. R1234ze(e) and R1234yf are the well-known refrigerants of hydrofluoroolefins (HFOs), the fourth-generation halocarbon refrigerants. Nature working fluids, R600a and R290, and third-generation refrigerant of halocarbon (hydrofluorocarbon, HFC), R32 and R152a, were selected in the assessment. A detail mathematical model of the ejector, as well as other components of the cycle, was built. The results showed that the coefficient of performance (COP) of R1234ze(e) was significantly higher than R600a at the same operating conditions. R1234yf’s performance was compatible with R290, and both were about 5% less than the previous two. The results also indicated that R152a offered the best performance among the selected refrigerants, but due to the high value of global warming potential, it did not fulfill the requirements of the current European refrigerant regulations. On the other hand, R1234ze(e) was the most suitable working fluid for the ejector cooling technology, thanks to its overall performance.


Author(s):  
S-C Yang

This paper presents a method for determining the mathematical model of an elbow mechanism with a convex tooth and a concave tooth. Based on this method, the mathematical model presents the meshing principles of a conical cutter meshed with a tooth that is either convex or concave. Using the developed mathematical models and the tooth contact analysis, kinematic errors are investigated according to the obtained geometric modelling of the designed gear meshing when assembly errors are present. The influence of misalignment on kinematic errors has been investigated. The goal of the current study is to investigate von-Mises stress for three teeth contact pairs. A structural load is assumed to act on a gear of the proposed mechanism. The von-Mises of the proposed gear is determined. The conical cutter used in the design and manufacture of the convex and concave gear is shown. For example, the proposed mechanism with a transmission ratio of 3:2 was determined with the aid of the proposed mathematical model. Using rapid prototyping and manufacturing technology, an elbow mechanism with a convex gear, a concave gear and a frame was designed. The RP primitives provide an actual full-size physical model that can be analysed and used for further development. Results from these mathematical models are applicable to the design of an elbow mechanism.


2018 ◽  
Vol 26 (03) ◽  
pp. 1850025
Author(s):  
Hicham Boushaba ◽  
Abdelaziz Mimet

The aim of this paper is to provide a global study of an adsorption refrigeration machine driven by solar heat storage and collected by parabolic trough collector. The system operates with ammonia (as refrigerant) and activated carbon (as adsorbent). A mathematical model interpreting the progression of the heat and the mass transfer at each element of the prototype has been developed. The solar irradiation and the real ambient temperature variations corresponding to a usual summer day in Tetouan (Morocco) are considered. The system performance is evaluated trough specific cooling power (SCP) as well as solar coefficient of performance (SCOP), which was estimated by a dynamic simulation cycle. The pressure, temperature and adsorbed mass profiles in the Adsorber have been calculated. The effects of significant design and operating parameters on the system performance have been investigated. The results show the capability of our system to realize an encouraging performance and to overcome the intermittence of the adsorption refrigeration machines. For a daily solar irradiation of 18[Formula: see text]MJ[Formula: see text]m[Formula: see text] and operating conditions of evaporation temperature [Formula: see text]C, condensation temperature [Formula: see text]C and generation temperature [Formula: see text]C, the results show that the process could achieve an SCP of 115[Formula: see text]W[Formula: see text]kg[Formula: see text] and it could produce a daily specific cooling capacity of 3310[Formula: see text]kJ[Formula: see text]kg[Formula: see text], whereas its SCOP could attain 0.141.


2012 ◽  
Vol 268-270 ◽  
pp. 1517-1522 ◽  
Author(s):  
Guo Jin Chen ◽  
Ting Ting Liu ◽  
Ni Jin ◽  
You Ping Gong ◽  
Huo Qing Feng

The logistics and loading machinery is the typical hydromechatronics integrated system. How to solve the reasonable power match in the driving and lifting process of the logistics and loading machinery, we need to establish the mathematical model of the driving and lifting system, and analyze their control characteristics. Aiming at the load requirements for different operating conditions, this paper studies respectively the dynamic characteristics of the driving and lifting system. Through simulation and computation, the control methods and strategies based on the best performance are proposed. That lays the foundation for the optimization design of the logistics and loading machinery.


2021 ◽  
Vol 39 (1A) ◽  
pp. 45-55
Author(s):  
Ahmed H. Al-Hassani ◽  
Alaa R. Al-Badri

The operation and performance of heat-pump systems are affected by indoor and outdoor operating conditions. Power consumption and system efficiency are related to evaporator and condenser working pressures. Intelligent controllers such as a proportional integral (PI) controller improve the performance of variable speed refrigeration systems (VSRs) with electronic expansion valve (EEV). Evaporator and condenser pressures affect the system power consumption and efficiency. In this study, the influence of evaporator and condenser temperatures on the performance of a variable speed refrigeration system with an EEV was experimentally investigated at constant cooling load. The experimental system comprises of a rotary compressor, shell-and-coil condenser, EEV, and shell-and-coil evaporator for one-ton cooling capacity with refrigerant R410. Compressor speed and EEV opening are controlled by a PI controller with two control loops and the refrigerant superheat (DS) is maintained at 7°C. The results show that at constant cooling capacity, the refrigerant flow rate rises with the increase in the compressor speed. The coefficient of performance (COP) is improved with low compressor speed. The System COP is increased by 3.3% with increasing evaporator inlet water temperature for 2°C due to the reduction in the compressor speed and compression ratio. High condenser inlet water temperature promotes the refrigerant subcooling.


Author(s):  
Anoop Kumar. M Et.al

Ejector flow in an ejector air conditioning system using R245fa is analysed for entrainment ratio and potential refrigeration effect, at varying temperature and heat input conditions in  the generator ranging from 60C to 100C and 2kW to 5kW respectively. The effect of varying generator temperature in cooling capacity of the system when the vapour ejectoris operating at design evaporator and condenser temperatures of 10C and 35C respectively is investigated. The mathematical model of the vapour ejector with optimum area ratio is developed and validated. A critical entrainment ratio of 0.385 is obtained corresponding to generator temperature of 100C. When the generator temperature is varied from 60C to 100C, the cooling capacity range from 0.3kW at generator heat input of 2 kW to 1.78 kW at 5 kW heat input. Further, the operation of the system is analysed for off design operating condition corresponding to reduced heat input rate in the generator. In that case the state of primary refrigerant flow in ejector inlet will be two phase and a mathematical model for two-phase ejector flow is developed and validated. Ejector flow analysis revealed the minimum quality of flow at ejector inlet to maintain adequate backpressure for condensation to occur range from 0.72 at 60C to 0.22 at 100C. The corresponding refrigeration refrigeration effect produced is less than the respective designed operation value byits  12.2% to 8%. Further, analysis of the system shows that at least 7 kW heat input at 100C is required to produce 1 ton of cooling effect. Ejector flow in an ejector air conditioning system using R245fa is analysed for entrainment ratio and potential refrigeration effect, at varying temperature and heat input conditions in  the generator ranging from 60C to 100C and 2kW to 5kW respectively. The effect of varying generator temperature in cooling capacity of the system when the vapour ejectoris operating at design evaporator and condenser temperatures of 10C and 35C respectively is investigated. The mathematical model of the vapour ejector with optimum area ratio is developed and validated. A critical entrainment ratio of 0.385 is obtained corresponding to generator temperature of 100C. When the generator temperature is varied from 60C to 100C, the cooling capacity range from 0.3kW at generator heat input of 2 kW to 1.78 kW at 5 kW heat input. Further, the operation of the system is analysed for off design operating condition corresponding to reduced heat input rate in the generator. In that case the state of primary refrigerant flow in ejector inlet will be two phase and a mathematical model for two-phase ejector flow is developed and validated. Ejector flow analysis revealed the minimum quality of flow at ejector inlet to maintain adequate backpressure for condensation to occur range from 0.72 at 60C to 0.22 at 100C. The corresponding refrigeration refrigeration effect produced is less than the respective designed operation value byits  12.2% to 8%. Further, analysis of the system shows that at least 7 kW heat input at 100C is required to produce 1 ton of cooling effect.


2021 ◽  
Vol 114 ◽  
pp. 01020
Author(s):  
Arkadiy Plotnikov ◽  
Tatyana Goryacheva ◽  
Flyura Kazakova ◽  
Ekaterina Zakharchenko

This article is devoted to the further development of feedback loop models. They are used in the management of a single-industry firm. The development of the studying consists in the mathematical modeling of transients and assessing their impact on economic indicators. To solve this problem, the following was done in the article. A structural model of the functioning of a single-industry firm (SIF) is presented. It is built in accordance with the theory of automatic control (TAC) and includes elements: a management unit, a production unit, a sales unit, information nodes, as well as a feedback loop (FL). Equations and relationships describing the logic of the functioning of the company as a production system are presented. They allowed us to derive dynamic relationships and differential equations that reflect feedback loops on revenue and production costs. The system of expressions in operator form is presented, which describes the contour of the FL SIF. It has the form of a system of differential equations. It forms the basis of the mathematical model of SIF in the control system. This model made it possible to obtain a graphical interpretation of transients with closed and open FL based on the use of the Mathcad editor. Transients are fluctuations in sales volumes and production costs in the presence of disturbing influences. This is the scientific result and determines the novelty of the article.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5991
Author(s):  
Christian J. L. Hermes ◽  
Joel Boeng ◽  
Diogo L. da Silva ◽  
Fernando T. Knabben ◽  
Andrew D. Sommers

Modern refrigerators are equipped with fan-supplied evaporators often tailor-made to mitigate the impacts of frost accretion, not only in terms of frost blocking, which depletes the cooling capacity and therefore the refrigerator coefficient of performance (COP), but also to allow optimal defrosting, thereby avoiding the undesired consequences of condensate retention and additional thermal loads. Evaporator design for frosting conditions can be done either empirically through trial-and-error approaches or using simulation models suitable to predict the distribution of the frost mass along the finned coil. Albeit the former is mandatory for robustness verification prior to product approval, it has been advocated that the latter speeds up the design process and reduces the costs of the engineering undertaking. Therefore, this article is aimed at summarizing the required foundations for the design of efficient evaporators and defrosting systems with minimized performance impacts due to frosting. The thermodynamics, and the heat and mass transfer principles involved in the frost nucleation, growth, and densification phenomena are presented. The thermophysical properties of frost, such as density and thermal conductivity, are discussed, and their relationship with refrigeration operating conditions are established. A first-principles model is presented to predict the growth of the frost layer on the evaporator surface as a function of geometric and operating conditions. The relation between the microscopic properties of frost and their macroscopic effects on the evaporator thermo-hydraulic performance is established and confirmed with experimental evidence. Furthermore, different defrost strategies are compared, and the concept of optimal defrost is formulated. Finally, the results are used to analyze the efficiency of the defrost operation based on the net cooling capacity of the refrigeration system for different duty cycles and evaporator geometries.


Sign in / Sign up

Export Citation Format

Share Document