Damage identification in concrete structures with uncertain but bounded measurements

2016 ◽  
Vol 16 (6) ◽  
pp. 649-662 ◽  
Author(s):  
Suryakanta Biswal ◽  
Ananth Ramaswamy

The major sources of error in the measurements of concrete structures are the gauge sensitivities, calibration accuracies, amplitude linearities, and temperature corrections to the gauge sensitivities, which are given in terms of plus–minus ranges, and the round off errors in the measured responses, which are better represented by interval bounds. An algorithm is proposed adapting the existing modified Metropolis Hastings algorithm for estimating the posterior probability of the damage indices as well as the posterior probability of the bounds of the interval parameters, when the measurements are given in terms of interval bounds. A damage index is defined for each element of the finite element model considering the parameters of each element are intervals. Methods are developed for evaluating response bounds in the finite element software ABAQUS, when the parameters of the finite element model are intervals. The proposed method is validated against reinforced concrete beams with three damage scenarios mainly (1) loss of stiffness, (2) loss of mass, and (3) loss of bond between concrete and reinforcement steel, which have been tested in our laboratory. Comparison of the prediction from the proposed method with those obtained from Bayesian analysis and interval optimization technique show improved accuracy and computational efficiency in addition to better representation of measurement uncertainties through interval bounds.

2012 ◽  
Vol 479-481 ◽  
pp. 457-461
Author(s):  
Dong Hui Chen ◽  
Xin Lu ◽  
Xing Wang Chai ◽  
Bao Gang Wang ◽  
Hong Xia Guo ◽  
...  

In this paper,soil parameters and the collected data were tested and processed, and the changing trends of force with drilling depth were obtained and the maximum force applying to the working components was picked up. Compared with the smooth working component, the force applying to the unsmooth working components is smaller. Some parameters needed in Drucker-Prager soil model were measured and modified according to the basic tests. The simulation model was built in the finite element software -ANSYS. The simulation result is consistent with the actual testing result, which confirms the finite element model is correct .


2010 ◽  
Vol 456 ◽  
pp. 103-114
Author(s):  
Shi Ling Xing ◽  
Jian Shu Ye ◽  
Hang Sun

In order to use finite element software to complete the design or calculation of bridge multi-pile foundation, this paper discusses the finite element model (FEM) of a bridge multi-pile based on the theory and provisions in Code for Design of Ground Base and Foundation of Highway Bridges and Culverts (CDGBFHBC 2007) of china. For the FEM of a bridge-multi pile foundation, cap is regarded as a rigid body, piles are taken as beams, and boundary constraints are a series of horizontal springs and vertical springs. First, the formula of stiffness for horizontal springs and bottom vertical spring is derived according to elastic ground base theory and winkler hypotheses. Secondly, for the friction pile, the stiffness of vertical springs on piles side is derived basis of the principle of friction generated and simplified distribution of pile shaft resistance. Then, the FEM of multi-pile needs pay attention to three issues: the simulation of connections between piles and cap, elastic modulus needs discount, and the weight for pile underneath the ground line (or local scour line) needs calculate by half. Taking pile section bending moment often control the design and calculation of pile into account, this paper gives a simplified FEM of pile. Finally, an example is used to introduce the application of the FEM of bridge multi-pile foundation.


2012 ◽  
Vol 487 ◽  
pp. 879-883
Author(s):  
Jiang Wei Wu

With the port crane getting bigger and heavier, and also moving much faster than before, the thermal effect in wheel and rail during the brake process can be a reason of the failure of port crane. In this paper, the thermal effect during the brake process of port crane is studied using the finite element method. Based on the finite element model, the ANSYS10.0 finite element software is used. The thermal effects under different coefficients are discussed. Three different slide speed of wheel, two different loads of crane, and three different frictional coefficients are applied. The importance of the different coefficients is obtained from the numerical results.


2012 ◽  
Vol 58 (2) ◽  
pp. 135-151 ◽  
Author(s):  
Z. Ismail

Abstract A method of detecting honeycombing damage in a reinforced concrete beam using the finite element model updating technique was proposed. A control beam and two finite element models representing different severity of damage were constructed using available software and the defect parameters were updated. Analyses were performed on the finite element models to approximate the modal parameters. A datum and a control finite element model to match the datum test beams with honeycombs were prepared. Results from the finite element model were corrected by updating the Young’s modulus and the damage parameters. There was a loss of stiffness of 3% for one case, and a loss of 7% for another. The more severe the damage, the higher the loss of stiffness. There was no significant loss of stiffness by doubling the volume of the honeycombs.


2011 ◽  
Vol 403-408 ◽  
pp. 3647-3651
Author(s):  
Xu Dan Dang ◽  
Shao Jie Shi ◽  
Jun Xiao

Through the analysis of micro-structures of Z-pin ends the basic hypothesis of elliptic configuration of the resin regions around Z-pin ends were proposed. The finite element model of the tensile modulus of X-cor sandwich was established and the finite element software ANSYS was used in the computation. The effects of Z-pin angle, diameter and density on the tensile modulus of X-cor sandwich were analyzed. Via the analysis of finite element model, the influencing trends of parameters of X-cor sandwich on the tensile modulus are achieved and the error range is ±10%. So the rationality of the proposed finite element model is verified and the finite element model can be used to forecast the tensile modulus of X-cor sandwich.


2011 ◽  
Vol 328-330 ◽  
pp. 1113-1117
Author(s):  
Xu Dan Dang ◽  
Shao Jie Shi ◽  
Jin San Jiang ◽  
Jun Xiao

Through the observation of photomicrographs of resin regions around Z-pin ends, the basic hypothesis of the elliptic configuration of resin regions in the X-cor sandwich were proposed. The parametric equations for describing the microscopic structures of resin regions were given. Then the geometric analysis model of X-cor sandwich was established. The finite element software ANSYS was used to establish the finite element model of the shear modulus and the shear modulus was calculated. The error range of finite element analysis is between ±10%. So the rationality of finite element model is verified and the finite element model can be used to forecast the shear modulus.


2015 ◽  
Vol 799-800 ◽  
pp. 589-595
Author(s):  
Ching Hui Tai ◽  
Chun Ho Yin

Finite element methods are applied to investigate the coefficient of restitution (COR) for the head of a golf club. ANSYS commercial finite element software is first applied to determine the COR of two different disc-shaped titanium impact surfaces. These values were then experimentally verified to validate the accuracy of the finite element model. Finally, ANSYS was applied to determine the COR for club heads according to USGA specifications to confirm the reliability of the finite element model. The model is then validated by comparison with experimental results. The model can not only reduce time needed for product design and experimental testing, but can serve as a basis for follow-up studies on ball flight trajectory.


2019 ◽  
Vol 54 (9) ◽  
pp. 1197-1216 ◽  
Author(s):  
Yujiao Bai ◽  
Zhonghai Xu ◽  
Jieren Song ◽  
Linlin Miao ◽  
Chaocan Cai ◽  
...  

L-shaped stiffened composite panels provide an efficient structure for engineering applications. However, they often produce delamination in the preparation and service process due to a series of factors. To study the effect of different types of delamination on the compressive strength of stiffened composite panels, ABAQUS finite element software was used in combine with the progressive damage subroutine user-defined field variable (USDFLD), and the finite element model was established based on cohesive theory to realize the prediction of the progressive failure process and strength of the stiffened composite panels. The results showed that the delamination of a stringer had a greater impact on the strength of the stiffened composite panels than did the debonding between the skin panel and a stringer and the delamination of the skin panel. The debonding delamination and delamination of a stringer exhibited delamination growth near the damage position during static compression, but delamination of the skin panel exhibited no delamination growth. The experimental results were in good agreement with the finite element simulation results, which verified the validity of the finite element model.


2021 ◽  
Vol 1020 ◽  
pp. 148-156
Author(s):  
Dong Sheng Wang ◽  
Ke Jian Yang ◽  
Hao Yang ◽  
Pei Pei Zhang

A finite element model of thermal coupling stress field during laser cladding plasma spraying of preset MCrAlY coating was constructed based on the finite element model of temperature field by using the indirect thermal coupling method in ANSYS finite element software. Moreover, stress field during laser cladding was analyzed. Through the constructed model, variation laws of stress field with time during laser cladding and cooling process could be mastered. Based on the stress field, the formation mechanism of cracks in laser cladding coating and influencing factors were further analyzed and some solutions to cracks of laser cladding coating were proposed.


Sign in / Sign up

Export Citation Format

Share Document