A two-step approach to damage localization at supporting structures of offshore wind turbines

2017 ◽  
Vol 17 (5) ◽  
pp. 1313-1330 ◽  
Author(s):  
Karsten Schröder ◽  
Cristian Guillermo Gebhardt ◽  
Raimund Rolfes

This article introduces a new adaptive two-step optimization algorithm for finite element model updating with special emphasis on damage localization at supporting structures of offshore wind turbines. The algorithm comprises an enhanced version of the global optimization algorithm simulated annealing, the simulated quenching method that approximates an initial guess of damage localization. Subsequently, sequential quadratic programming is used to compute the final solution adaptively. For the correlation of numerical model and measurement data, both a measure based on eigenfrequencies and mode shapes and a measure employing time series are implemented and compared with respect to their performance for damage localization. Phase balance of the time signals is achieved using cross-correlation. The localization problem is stated as a minimization problem in which the measures are used in time and modal domain as the objective function subject to constraints. Furthermore, the objective function value of the adjusted model is used to distinguish correct from wrong solutions. The functionality is proven using a numerical model of a monopile structure with simulated damage and a lab-scaled model of a tripile structure with real damage.

2019 ◽  
Vol 7 (5) ◽  
pp. 134 ◽  
Author(s):  
Rui He ◽  
Ji Ji ◽  
Jisheng Zhang ◽  
Wei Peng ◽  
Zufeng Sun ◽  
...  

With the development of offshore wind energy in China, more and more offshore wind turbines are being constructed in rock-based sea areas. However, the large diameter and thin-walled steel rock-socketed monopiles are very scarce at present, and both the construction and design are very difficult. For the design, the dynamic safety during the whole lifetime of the wind turbine is difficult to guarantee. Dynamic safety of a turbine is mostly controlled by the dynamic impedances of the rock-socketed monopile, which are still not well understood. How to choose the appropriate impedances of the socketed monopiles so that the wind turbines will neither resonant nor be too conservative is the main problem. Based on a numerical model in this study, the accurate impedances are obtained for different frequencies of excitation, different soil and rock parameters, and different rock-socketed lengths. The dynamic stiffness of monopile increases, while the radiative damping decreases as rock-socketed depth increases. When the weathering degree of rock increases, the dynamic stiffness of the monopile decreases, while the radiative damping increases.


2016 ◽  
Vol 23 (1) ◽  
pp. 52-60
Author(s):  
Paweł Dymarski ◽  
Ewelina Ciba ◽  
Tomasz Marcinkowski

Abstract This paper presents a description of an effective method for determining loads due to waves and current acting on the supporting structures of the offshore wind turbines. This method is dedicated to the structures consisting of the cylindrical or conical elements as well as (truncates) pyramids of polygon with a large number of sides (8 or more). The presented computational method is based on the Morison equation, which was originally developed only for cylindrically shaped structures. The new algorithm shown here uses the coefficients of inertia and drag forces that were calculated for non-cylindrical shapes. The analysed structure consists of segments which are truncated pyramids on the basis of a hex decagon. The inertia coefficients, CM, and drag coefficients, CD, were determined using RANSE-CFD calculations. The CFD simulations were performed for a specific range of variation of the period, and for a certain range of amplitudes of the velocity. In addition, the analysis of influence of the surface roughness on the inertia and drag coefficients was performed. In the next step, the computations of sea wave, current and wind load on supporting structure for the fifty-year storm were carried out. The simulations were performed in the time domain and as a result the function of forces distribution along the construction elements was obtained. The most unfavourable distribution of forces will be used, to analyse the strength of the structure, as the design load.


2021 ◽  
Author(s):  
Rieska Mawarni Putri ◽  
Etienne Cheynet ◽  
Charlotte Obhrai ◽  
Jasna Bogunovic Jakobsen

Abstract. Turbulence spectral characteristics for various atmospheric stratifications are studied using the observations from an offshore mast at Vindeby wind farm. Measurement data at 6 m, 18 m and 45 m above the mean sea level are considered. At the lowest height, the normalized power spectral densities of the velocity components show deviations from Monin-Obukhov similarity theory (MOST). A significant co-coherence at the wave spectral peak frequency between the vertical velocity component and the velocity of the sea surface is observed, but only when the significant wave heights exceed 0.9 m. The turbulence spectra at 18 m generally follow MOST and are consistent with the empirical spectra established on the FINO1 offshore platform from an earlier study. The data at 45 m is associated with a high-frequency measurement noise which limits its analysis to strong wind conditions only. The estimated co-coherence of the along-wind component under near-neutral atmosphere matches remarkably well with those at FINO1. The turbulence characteristics estimated from the present dataset are valuable to better understand the structure of turbulence in the marine atmospheric boundary layer and are relevant for load estimations of offshore wind turbines. Yet, a direct application of the results to other offshore or coastal sites should be exercised with caution, since the dataset is collected in shallow waters and at heights lower than the hub height of the current and the future state-of-the-art offshore wind turbines.


Brodogradnja ◽  
2021 ◽  
Vol 72 (1) ◽  
pp. 109-124
Author(s):  
Issa Fowai ◽  
◽  
Zhang Jianhua ◽  
Ke Sun ◽  
Bin Wang ◽  
...  

Most of the offshore wind turbines (OWT) recently installed in Europe, China and North America are in shallow water. However, unlocking the full potential of OWT lies in deeper waters. Jacket substructures have presented themselves as a reliable foundation concept for transitional water depth. This study focuses on the structural static and dynamic analysis of the traditional jacket substructures (with X and K bracing) and the recently patented three-legged twisted jackets (with a twisted angle of 30 and 60 degrees) for deployment in transitional water (beyond 60 m). To facilitate comparison, the dimensions of all the jackets remain the same, while, the geometric configurations are distinct. Static analysis was implemented to better understand the global load bearing behaviour of the jackets. First, the global displacement patterns at the tower top are compared. The individual reactions at mud-line were investigated, followed by the evaluation of the maximum von Mises stress. Subsequently, this research went on to investigate the effect of dynamic loading. In this dynamic analysis, three main critical points were considered, including the wave point (67 m), the platform and the tower top. A modal analysis was performed to compute the mode shapes and natural frequencies for all the jackets. The first five modes of all the jackets were also checked against the results available for the OC4 project. A similar analytical approach was adopted for the structural design of monopile or tripod foundations for offshore wind turbines. The results showed that in the static analysis both the traditional jackets and the twisted jackets were safe under the provided load combination. The twisted jacket proved to possess excellent structural behaviour compared to the traditional four-legged jackets, while maintaining the merits of lower material usage with fewer nodes. Analysing the von Mises stress revealed that the maximum stress occurred at the transition piece and close to the working platform. The modal analysis results of the jackets demonstrated that the twisted jackets (30 and 60 degrees) with the first natural frequency of 0.29 and 0.31 Hz fell under the soft-stiff design category whereas the traditional four-legged jackets were classified as stiff-stiff designs. The discovered structural performance of OWTs equipped with various jacket foundations contributes to the preliminary structural selection and optimal design of foundations of OWTs to be installed in transitional water.


2021 ◽  
Author(s):  
Mees van Vondelen ◽  
Sachin T. Navalkar ◽  
Alexandros Iliopoulos ◽  
Daan van der Hoek ◽  
Jan-Willem van Wingerden

Abstract. To increase the contribution of offshore wind energy to the global energy mix in an economically sustainable manner, it is required to reduce the costs associated with the production and operation of offshore wind turbines (OWTs). One of the largest uncertainties and sources of design conservatism for OWTs is the determination of the global damping level of the OWT. Estimation of OWT damping based on field measurement data has hence been subject to considerable research attention and is based on the use of (preferably operational) vibration data obtained from sensors mounted on the structure. As such, it is an output-only problem and can be addressed using state-of-the-art Operational Modal Analysis (OMA) techniques, reviewed in this paper. The evolution of classical time- and frequency-domain OMA techniques has been reviewed; however, literature shows that the OWT vibration data is often contaminated by rotor speed harmonics of significantly high energy located close to structural modes, which impede classical damping identification. Recent advances in OMA algorithms for known or unknown harmonic frequencies can be used to improve identification in such cases. Further, the transmissibility family of OMA algorithms is purported to be insensitive to harmonics. Based on this review, a classification of OMA algorithms is made according to a set of novel suitability criteria, such that the OMA technique appropriate to the specific OWT vibration measurement setup may be selected. Finally, based on this literature review, it has been identified that the most attractive future path for OWT damping estimation lies in the combination of uncertain non-stationary harmonic frequency measurements with statistical harmonic isolation to enhance classical OMA techniques, orthogonal removal of harmonics from measured vibration signals, and in the robustification of transmissibility-based techniques.


2014 ◽  
Vol 13 (6) ◽  
pp. 644-659 ◽  
Author(s):  
Christof Devriendt ◽  
Filipe Magalhães ◽  
Wout Weijtjens ◽  
Gert De Sitter ◽  
Álvaro Cunha ◽  
...  

This article will present and discuss the approach and the first results of a long-term dynamic monitoring campaign on an offshore wind turbine in the Belgian North Sea. It focuses on the vibration levels and modal parameters of the fundamental modes of the support structure. These parameters are crucial to minimize the operation and maintenance costs and to extend the lifetime of offshore wind turbine structure and mechanical systems. In order to perform a proper continuous monitoring during operation, a fast and reliable solution, applicable on an industrial scale, has been developed. It will be shown that the use of appropriate vibration measurement equipment together with state-of-the art operational modal analysis techniques can provide accurate estimates of natural frequencies, damping ratios, and mode shapes of offshore wind turbines. The identification methods have been automated and their reliability has been improved, so that the system can track small changes in the dynamic behavior of offshore wind turbines. The advanced modal analysis tools used in this application include the poly-reference least squares complex frequency-domain estimator, commercially known as PolyMAX, and the covariance-driven stochastic subspace identification method. The implemented processing strategy will be demonstrated on data continuously collected during 2 weeks, while the wind turbine was idling or parked.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7576
Author(s):  
Maximilian Henkel ◽  
Wout Weijtjens ◽  
Christof Devriendt

The design of monopile foundations for offshore wind turbines is most often driven by fatigue. With the foundation price contributing to the total price of a turbine structure by more than 30%, wind farm operators seek to gain knowledge about the amount of consumed fatigue. Monitoring concepts are developed to uncover structural reserves coming from conservative designs in order to prolong the lifetime of a turbine. Amongst promising concepts is a wide array of methods using in-situ measurement data and extrapolating these results to desired locations below water surface and even seabed using models. The modal decomposition algorithm is used for this purpose. The algorithm obtains modal amplitudes from acceleration and strain measurements. In the subsequent expansion step these amplitudes are expanded to virtual measurements at arbitrary locations. The algorithm uses a reduced order model that can be obtained from either a FE model or measurements. In this work, operational modal analysis is applied to obtain the required stress and deflection shapes for optimal validation of the method. Furthermore, the measurements that are used as input for the algorithms are constrained to measurements from the dry part of the substructure. However, with subsoil measurement data available from a dedicated campaign, even validation for locations below mud-line is possible. After reconstructing strain history in arbitrary locations on the substructure, fatigue assessment over various environmental and operational conditions is carried out. The technique is found capable of estimating fatigue with high precision for locations above and below seabed.


Sign in / Sign up

Export Citation Format

Share Document