Acoustic emission and moving window-improved kernel entropy component analysis for structural condition monitoring of hoisting machinery under various working conditions

2021 ◽  
pp. 147592172110336
Author(s):  
Yang Li ◽  
Feiyun Xu

Acoustic emission (AE) has been widely used to the nondestructive evaluation (NDE) and structural health monitoring (SHM) of hoisting machinery recently. Kernel entropy component analysis (KECA) is generally applied to extract the AE features based on its excellent nonlinear ability. However, traditional KECA specifically requires a considerable number of components (e.g. eigenvalues and eigenvectors) to excellently describe the original data, which leads to a reduction in the effect of approximate dimensionality reduction of high-dimensional data, thus causing readily unacceptable condition monitoring result. To overcome this weakness, a novel method named moving window-improved kernel entropy component analysis (MW-IKECA) is proposed in this study for structural condition monitoring of hoisting machinery, which is aimed at extracting more AE feature information and improving the condition identification accuracy. Firstly, a twiddle factor is introduced in the KECA model for the purpose of breaking the restriction that the projection axes originate only from the feature vectors and maximizing the independence between the components. Meanwhile, the moving window local strategy is incorporated into the proposed IKECA to extract more rich and effectiveness AE feature information at different scales. Finally, the Cauchy–Schwarz (CS) statistic is utilized to calculate the similarity between probability density functions and maintain the angular structure of the MW-IKECA feature space for the task of improving the monitoring accuracy and shortening the monitoring time-delay of MW-IKECA. Results of the experimental and practical engineering application validate the effectiveness and superiority of the proposed method in AE-based crane SHM under different working conditions compared with the traditional KECA and some combinatorial methods.

1993 ◽  
Vol 46 (4) ◽  
pp. 133-138 ◽  
Author(s):  
Patricio A. A. Laura

This article concerns the problem of evaluating the `structural health’ of cables or ropes by means of non-destructive testing methods. Special emphasis is placed upon electromagnetic techniques and the acoustic emission method.


2017 ◽  
Vol 24 (18) ◽  
pp. 4122-4129 ◽  
Author(s):  
YJ Song ◽  
SZ Li

Galvanized steel pipes with screw thread connections are widely used in indoor gas transportation. In contrast with the failure of pipe tubes, leakage in this system is prone to occur in the screw thread connections. Aiming at this specific engineering application, a method based on acoustic emission (AE) and artificial neural networks (ANNs) is proposed to detect small gas leaks. Experiments are conducted on a specifically designed galvanized steel pipe system with the manipulated leak occurring in the screw thread connection to acquire the raw AE data. The features in the time and frequency domains are extracted and selected to establish an ANN model for leak detection. It has been validated that the developed ANN-based leak detector can achieve an identification accuracy of over 98%. It is also verified that the proposed model is effective even when the AE signals due to a small leak pass over two screw thread connections or an elbow connection.


2021 ◽  
Vol 113 (1-2) ◽  
pp. 585-603
Author(s):  
Wenderson N. Lopes ◽  
Pedro O. C. Junior ◽  
Paulo R. Aguiar ◽  
Felipe A. Alexandre ◽  
Fábio R. L. Dotto ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1054
Author(s):  
Guo Bi ◽  
Shan Liu ◽  
Shibo Su ◽  
Zhongxue Wang

Acoustic emission (AE) phenomenon has a direct relationship with the interaction of tool and material which makes AE the most sensitive one among various process variables. However, its prominent sensitivity also means the characteristics of random and board band. Feature representation is a difficult problem for AE-based monitoring and determines the accuracy of monitoring system. It is knottier for the situation of using diamond wheel grinding optical components, not only because of the complexity of grinding process but also the high requirement on surface and subsurface quality. This paper is dedicated to AE-based condition monitoring of diamond wheel during grinding brittle materials and feature representation is paid more attention. AE signal of brittle-regime grinding is modeled as a superposition of a series of burst-type AE events. Theory analysis manifested that original time waveform and frequency spectrum are all suitable for feature representation. Considering the convolution form of b-AE in time domain, a convolutional neural network with original time waveform of AE signals as the input is built for multi-class classification of wheel state. Detailed state division in a wheel’s whole life cycle is realized and the accuracy is over 90%. Different from the overlapping in time domain, AE components of different crack mechanisms are probably separated in frequency domain. From this point of view, AE spectrums are more suitable for feature extraction than the original time waveform. In addition, the time sequence of AE samples is essential for the evaluation of wheel’s life elapse and making use of sequential information is just the idea behind recurrent neural network (RNN). Therefore, long short-term memory (LSTM), a special kind of RNN, is used to build a regression prediction model of wheel state with AE spectrums as the model input and satisfactory prediction accuracy is acquired on the test set.


2021 ◽  
pp. 107754632110161
Author(s):  
Aref Aasi ◽  
Ramtin Tabatabaei ◽  
Erfan Aasi ◽  
Seyed Mohammad Jafari

Inspired by previous achievements, different time-domain features for diagnosis of rolling element bearings are investigated in this study. An experimental test rig is prepared for condition monitoring of angular contact bearing by using an acoustic emission sensor for this purpose. The acoustic emission signals are acquired from defective bearing, and the sensor takes signals from defects on the inner or outer race of the bearing. By studying the literature works, different domains of features are classified, and the most common time-domain features are selected for condition monitoring. The considered features are calculated for obtained signals with different loadings, speeds, and sizes of defects on the inner and outer race of the bearing. Our results indicate that the clearance, sixth central moment, impulse, kurtosis, and crest factors are appropriate features for diagnosis purposes. Moreover, our results show that the clearance factor for small defects and sixth central moment for large defects are promising for defect diagnosis on rolling element bearings.


1999 ◽  
Vol 8 (3) ◽  
pp. 096369359900800 ◽  
Author(s):  
P. S. Sreejith ◽  
R. Krishnamurthy

During manufacturing, the performance of a cutting tool is largely dependent on the conditions prevailing over the tool-work interface. This is mostly dependent on the status of the cutting tool and work material. Acoustic emission studies have been performed on carbon/phenolic composite using PCD and PCBN tools for tool condition monitoring. The studies have enabled to understand the tool behaviour at different cutting speeds.


2008 ◽  
Vol 13-14 ◽  
pp. 41-47 ◽  
Author(s):  
Rhys Pullin ◽  
Mark J. Eaton ◽  
James J. Hensman ◽  
Karen M. Holford ◽  
Keith Worden ◽  
...  

This work forms part of a larger investigation into fracture detection using acoustic emission (AE) during landing gear airworthiness testing. It focuses on the use of principal component analysis (PCA) to differentiate between fracture signals and high levels of background noise. An artificial acoustic emission (AE) fracture source was developed and additionally five sources were used to generate differing AE signals. Signals were recorded from all six artificial sources in a real landing gear component subject to no load. Further to this, artificial fracture signals were recorded in the same component under airworthiness test load conditions. Principal component analysis (PCA) was used to automatically differentiate between AE signals from different source types. Furthermore, successful separation of artificial fracture signals from a very high level of background noise was achieved. The presence of a load was observed to affect the ultrasonic propagation of AE signals.


Sign in / Sign up

Export Citation Format

Share Document