Submicron surface roughening of aliphatic polyamide 6,6 fabric through low temperature plasma and its effect on interfacial bonding in rubber composite

2017 ◽  
Vol 47 (8) ◽  
pp. 2029-2049 ◽  
Author(s):  
Siddhan Periyasamy ◽  
Krishna Prasad G ◽  
Raja ASM ◽  
Prashant G Patil

The present study aims to produce submicron surface roughening of aliphatic polyamide 6,6 (nylon 6,6) fabric using dielectric barrier discharge-based atmospheric low temperature plasma for improving the adhesion bonding with rubber. The plasma treatment was done in the time ranging from 15 s to 300 s. Formation of surface roughness on the fabric due to plasma treatment and the associated chemical changes were studied through high-resolution scanning electron microscope, geometrical surface roughness by Kawabata evaluation system surface tester, contact angle measurements and Fourier transform infrared in Attenuated total reflectance mode. Scanning electron microscope micrographs revealed the presence of submicron roughness on the nylon 6,6 fibre surface with pores of around 100 nm (0.1 µm) for the optimum treatment time of 180 s above which the pore merging effect dominated resulting in the net low surface roughness. Geometrical roughness (SMD) results were also well in agreement with the scanning electron microscope results for the roughening and the optimum effect of the plasma treatment. The control and plasma treated nylon 6,6 samples were used as reinforcements for rubber composite. The peel strength of the rubber composite, which is a measure of interfacial bonding, increased to 150% as the maximum for the optimum plasma treatment time of 180 s. Intense rubber deposits over the 180 s plasma treated samples were observed while only a few deposits of rubber were observed on the control fabric when their interfaces were examined through scanning electron microscope after peeling test.

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Zheng Min ◽  
Yingjie Wu ◽  
Kailai Yang ◽  
Jin Xu ◽  
Sarwesh Narayan Parbat ◽  
...  

Abstract Microchannel manufacturing is one of the fastest growing areas in advanced manufacturing with numerous applications, including turbine blade cooling structures, compact microchannel heat exchangers, and electronic cooling devices. Recent development of metallic additive manufacturing (AM) based on direct metal laser sintering technology is capable of fabricating microscale structures with high complexity and design flexibility. However, powder bed laser sintering process produces rough surface characteristics caused by hatch overlaps and particle attachments, leading to channel size reductions and rough surfaces. In this paper, dimensional metrology of cross-sectional views of multirow microchannels made by AM was conducted by a scanning electron microscope (SEM) at different locations along the printing direction. Channel size reduction, surface roughness, and circularity tolerance of the as-printed channels were analyzed based on micrographs captured by SEM. Results showed that both channel sizes and hole pitches affected the printing qualities of microchannels. The as-printed channel sizes reduced by more than 15% compared to the designed values. Two approaches were made in this paper to improve printing qualities. The first one was to redesign channel size in computer-aided design (CAD) model to make the as-printed channel sizes closer to the objective values. Electrochemical polishing (ECP) was then applied as a second way using sulfuric acid solutions. Surface roughness value was reduced by more than 40% after the ECP process.


2017 ◽  
Vol 9 (2) ◽  
pp. 4-10
Author(s):  
Krishna Prasada L ◽  
Jyothsna S Jathanna ◽  
Naveen Kumar ◽  
Ramya M.K ◽  
Elizabeth Issac

BACKGROUND: To determine the effectiveness of three polishing systems on three different composite materials by evaluating surface roughness using a Profilometer and Scanning electron microscope. METHODOLOGY: A total of Sixty-three resin composite disks were prepared in rectangular acrylic mould of 8×2mm dimension, with 4mm thickness. Specimens were made of light activated resin composite Filtek Z-250-XT, Tetric-N-Ceram bulkfill, Ceram X Duo. The sixty-three samples were divided into three groups of twenty-one samples each i.e. Group A (Filtek Z-250-XT), Group B (TetricN-Ceram bulkfill) and Group C (Ceram-X-Duo).Out of 21 samples of each of the material, 7 specimens were polished with multi enhance polishing agents, 7 specimens were polished with super snap polishing agents and 7 specimens were polished with sof-lexdiscs.Surface roughness of each sample after polishingwasevaluatedusingProfilometer and Scanning electron microscope. RESULTS: One-way anova and kruskalwallis test was used for statistical analysis. Ceram-X-Duo gave least roughness average value with Super snap polishing system when compared to multi enhance and sof-lex polishing system. CONCLUSION: Super snap polishing system is a better polishing system than multi enhance and soflex and Ceram-X-Duo composite material offers better polishability compared to Filtek Z-250-XT and Tetric-N-Ceram bulk fill.


2015 ◽  
Vol 827 ◽  
pp. 266-270 ◽  
Author(s):  
D.J. Djoko H. Santjojo ◽  
Masruroh ◽  
Sri Widyarti ◽  
Fadli Robiandi

Functionality of zinc pthalocyanine (ZnPc) thin film for immobilization of biomolecules was studied using bovine serum albumin (BSA). The functionality is affected by microstructures and surface roughness of the film. This studies is conducted by producing ZnPc films by means of thermal evaporation in vacuum. The ZnPc films were deposited on quartz crystal substrates with a polystyrene interlayer. Observations were carried out using a scanning electron microscope and an optical micro-profilometry. Enhancement of the functionality is observed with the increase of the film thickness. Surface roughness and microstructures of the film influence the functionality in a complex way. Adsorbtion of the BSA molecules is associated with both the surface roughness and microstructures. Although generally the adsorption is proportional to the contact area but the roughness and fibrous microstructures of the deposited ZnPc produce complex adsorption and trapping mechanisms in the immobilization of the BSA.


2017 ◽  
Vol 88 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Josko Viskic ◽  
Drazen Jokic ◽  
Suzana Jakovljevic ◽  
Lana Bergman ◽  
Sladana Milardovic Ortolan ◽  
...  

ABSTRACT Objective: To evaluate the surface of glazed lithium disilicate dental ceramics after irradiation under different irradiation settings of Nd:YAG and Er:YAG lasers using a scanning electron microscope (SEM). Materials and Methods: Three glazed-press lithium disilicate ceramic discs were treated with HF, Er:YAG, and Nd:YAG, respectively. The laser-setting variables tested were laser mode, repetition rate (Hz), power (W), time of exposure (seconds), and laser energy (mJ). Sixteen different variable settings were tested for each laser type, and all the samples were analyzed by SEM at 500× and 1000× magnification. Results: Surface analysis of the HF-treated sample showed a typical surface texture with a homogenously rough pattern and exposed ceramic crystals. Er:YAG showed no effect on the surface under any irradiation setting. The surface of Nd:YAG-irradiated samples showed cracking, melting, and resolidifying of the ceramic glaze. These changes became more pronounced as the power increased. At the highest power setting (2.25 W), craters on the surface with large areas of melted or resolidified glaze surrounded by globules were visible. However, there was little to no exposure of ceramic crystals or visible regular surface roughening. Conclusions: Neither Er:YAG nor Nd:YAG dental lasers exhibited adequate surface modification for bonding of orthodontic brackets on glazed lithium disilicate ceramics compared with the control treated with 9.5% HF.


1974 ◽  
Vol 96 (4) ◽  
pp. 591-594 ◽  
Author(s):  
D. D. Ratnagar ◽  
H. S. Cheng ◽  
J. A. Schey

The influences of lubricant viscosity and loading velocity on the surface finish of plastically compressed 6061 aluminum alloy cylinders were studied. Specimens with polished end faces were subjected to compression between two flat, chromium plated dies, with lubricants of a viscosity ranging from 42 cp to 1207 cp at 38 deg C. The deformed surfaces were studied under a scanning electron microscope and by stylus tracings and CLA readings. With the lighter lubricants surface roughening resulted from preferential yielding leading to a clear delineation of grain boundaries and slip lines. With the heavier lubricants, localized “hydrodynamic pockets” formed in addition to the above features. The depth of pockets increased with viscosity and/or velocity.


Author(s):  
Giovanni Grandi ◽  
Alex Timò ◽  
Margaret Sammarini ◽  
Maria Chiara Del Savio ◽  
Fabio Facchinetti

2010 ◽  
Vol 135 ◽  
pp. 382-387
Author(s):  
Zeng Dian Zhao ◽  
Yu Hong Huang ◽  
Yu Gang Zhao

In this paper, ferrosilicon powder was used as the ferromagnetic phase, corundum powder as the abrasive phase, high temperature inorganic binder as the adhesive, and after the ferrosilicon powder was modified, a series of magnetic abrasive was obtained by sintering method. Scanning electron microscope (SEM) and Energy dispersive spectrometer (EDS) were respectively used to characterize the morphology and elemental composition of magnetic abrasive. and through experiments carried out on the magnetic abrasive grinding performance testing and durability analysis. The experimental results showed that the magnetic abrasive prepared had good polishing ability and longer using time, and the surface roughness of the grinding sample can reach 0.12μm and the using time is up to 25 min.


2012 ◽  
Vol 622-623 ◽  
pp. 361-365 ◽  
Author(s):  
Vikas Upadhyay ◽  
P.K. Jain ◽  
N.K. Mehta

This work presents the influence of workpiece preheat temperatures on the machinability of Ti-6Al-4V alloy and chip formation. Machinability has been studied in terms of cutting forces, surface roughness and tool wear. Influence of preheat temperatures on chip morphology and roughness of chip back surface has been studied using scanning electron microscope and atomic force microscope respectively to get better insight of tribology at tool-chip interface. Based on overall observations, preheat temperature of 300 0C was found as the most appropriate parameter.


2016 ◽  
Vol 66 (5) ◽  
pp. 522 ◽  
Author(s):  
Ajit Dhanawade ◽  
Shailendra Kumar ◽  
R. V. Kalmekar

An experimental study of abrasive water jet machining of carbon epoxy composite is presented. Process parameters namely hydraulic pressure, traverse rate, stand-off distance and abrasive mass flow rate are considered for this study. Taguchi approach and analysis of variance are used to study the influence of process parameters on response characteristics including surface roughness and kerf taper. It is found that hydraulic pressure and traverse rate are most significant parameters to control surface roughness and kerf taper. Microscopic features of the machined surfaces are evaluated using scanning electron microscope and compared with sample surfaces machined by conventional method using diamond edge cutter.A set of process parameters is optimised to achieve minimum surface roughness and kerf taper. Confirmation tests are performed to verify the optimum set of process parameters. Defects like delamination, fibre pull out and abrasive embedment are also studied using scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document