Investigations on jute fibre-reinforced polyester composites: Effect of alkali treatment and poly(lactic acid) coating

2018 ◽  
Vol 49 (7) ◽  
pp. 923-942 ◽  
Author(s):  
MK Gupta

The aim of the present investigation is to overcome the limitations of jute fibre-reinforced polyester composite. The jute fibre-reinforced polyester composites were prepared by hand lay-up technique followed by static compression using constant fibres length 15 mm and constant fibres loading 16 wt.%. In the present work, treated jute fibres consisted of alkali treated, poly(lactic acid)-coated and alkali-treated coated with poly(lactic acid). Mechanical properties in terms of tensile, flexural and impact test, and dynamic mechanical properties in terms of storage modulus [Formula: see text], loss modulus [Formula: see text], damping [Formula: see text] and glass transition temperature [Formula: see text]of prepared composites were studied. In addition, water absorption properties in terms of percentage of water uptake and sorption, diffusion and permeability coefficient were also studied. In addition, morphological analysis of untreated and treated jute fibres and its polyester based composites was also carried out using scanning electron microscope. The results suggested that the limitations of jute fibre-reinforced polyester composites were significantly reduced after the treatment of fibres. The composite with alkali-treated jute fibres coated with poly(lactic acid) exhibited the best performance in terms of improvement in mechanical, dynamic mechanical and water resistance properties. The results obtained from present study show a successful attempt of a novel treatment.

2018 ◽  
Vol 53 (1) ◽  
pp. 65-72 ◽  
Author(s):  
MK Gupta ◽  
Rohit Singh

In the present work, a novel physical treatment (PLA coating) of sisal fibres and its influence on the water absorption, static and dynamic mechanical properties of its composites has been presented. The treated sisal fibres were used consisted of alkali treatment and PLA coating to fabricate its polyester-based composites by hand lay-up technique keeping constant fibres content as 20 wt.% . Water absorption analysis was carried out in terms of water uptake (%), and sorption, diffusion and permeability coefficient. In addition, static properties were examined in terms of tensile, flexural and impact test, and dynamic mechanical analysis was performed in terms of storage modulus [Formula: see text], loss modulus [Formula: see text], damping [Formula: see text] and glass transition temperature [Formula: see text]. It was reported that the PLA-coated sisal composites showed the best performance in water absorption, mechanical and dynamic mechanical properties than pure sisal and alkali-treated sisal composites. There were 33%, 49%, 48%, and 27% improvement in water resistance, tensile strength, flexural strength and impact strength, respectively, of PLA-coated sisal composites as compared to that of pure sisal composite.


2017 ◽  
Vol 32 (1) ◽  
pp. 89-107 ◽  
Author(s):  
Mfiso Emmanuel Mngomezulu ◽  
Adriaan Stephanus Luyt ◽  
Maya Jacob John

This work reports on the effect of expandable graphite (EG) on the morphology, thermal and dynamic mechanical properties of flame retardant poly(lactic acid) (PLA)/EG composites. The composites were prepared by melt-mixing and their structure, morphology, melting and crystallization behaviour, as well as their dynamic mechanical properties, were investigated. It was found that graphite layers still existed in an aggregate structure with poor filler dispersion resulting in a lack of interfacial adhesion between EG and the PLA matrix. The presence of EG did not favour the crystallization of PLA, increased the glass transition temperature and showed a reduction in the crystallinity of the composites. The composites with higher filler contents showed enhanced storage and loss moduli. The glass transition temperatures from the loss modulus and damping factor curves varied inconsistently with EG content. The use of commercial EG as filler in PLA can preserve the thermal properties of injection moulding grade Cereplast PLA.


2019 ◽  
pp. 152808371987884 ◽  
Author(s):  
Suhad D Salman

Owing to the high cost of carbon fibres and a necessity for finding alternatives that environmentally friendly, a portion of carbon fibres was substituted by woven jute fibre, with various stacking sequences for military applications. Hot press was used to fabricate the composite and hybrid samples of jute/carbon fibres reinforced polyvinyl butyral film using as a layer. Dynamic mechanical experiments (DMA) were conducted with more focus on the stacking sequences of jute and carbon, with increasing temperature. Results showed that the carbon/jute/carbon (H1) hybrid has the highest storage modulus and loss modulus values compared with other hybrids. Significantly, placing woven jute fibre at the outer layers and carbon fibres at the inner layers provided lower dynamic mechanical properties than that of the hybrids with placing jute at the inner layers. Besides, the damping factor shifts to higher temperatures by hybridization of jute fibres compared with carbon composite. Additionally, glass transition temperature (Tg) obtained from the damping curve and loss modulus exhibits a temperature between 129 and 180℃ for all composites, in withstanding dynamic loads. The dynamic mechanical properties were observed to be decreased with increasing temperature for all laminated composites. From results, it could be deduced that it is possible to reduce amount of carbon fibres in different composites industries with woven jute, thus providing less both cost and harmful environment.


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document