Chromatin Structure and Control of β-Like Globin Gene Switching

2002 ◽  
Vol 227 (9) ◽  
pp. 683-700 ◽  
Author(s):  
Susanna Harju ◽  
Kellie J. McQueen ◽  
Kenneth R. Peterson

The human β-globin locus is a complex genetic system widely used for analysis of eukaryotic gene expression. The locus consists of five functional β-like globin genes, ε, Gγ, Aγ, δ, and β, arrayed on the chromosome in the order that they are expressed during ontogeny. Globin gene expression is regulated, in part, by the locus control region, which physically consists of five DNasel-hypersensitive sites located 6-22 Kb upstream of the ε-globin gene. During ontogeny two switches occur in β-globin gene expression that reflect the changing oxygen requirements of the fetus. The first switch from embryonic ε- to fetal γ-globin occurs at six weeks of gestation. The second switch from γ- to adult δ- and β-globin occurs shortly after birth. Throughout the locus, cis-acting elements exist that are dynamically bound by trans-acting proteins, including transcription factors, co-activators, repressors, and chromatin modifiers. Discovery of novel erythroid-specific transcription factors and a role for chromatin structure in gene expression have enhanced our understanding of the mechanism of globin gene switching. However, the hierarchy of events regulating gene expression during development, from extracellular signaling to transcriptional activation or repression, is complex. In this review we attempt to unify the current knowledge regarding the interplay of cis-acting elements, transcription factors, and chromatin modifiers into a comprehensive overview of globin gene switching.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-7-SCI-7
Author(s):  
Mitchell J. Weiss

Abstract Abstract SCI-7 Efforts to define the mechanisms of globin gene expression and transcriptional control of erythrocyte formation have provided key insights into our understanding of developmental hematopoiesis. Our group has focused on GATA-1, a zinc finger protein that was initially identified through its ability to bind a conserved cis element that regulates globin gene expression. GATA-1 is essential for erythroid development and mutations in the GATA1 gene are associated with human cytopenias and leukemia. Several general principles have emerged through studies to define the mechanisms of GATA-1 action. First, GATA-1 activates not only globin genes, but also virtually every gene that defines the erythroid phenotype. This observation sparked successful gene discovery efforts to identify new components of erythroid development and physiology. Second, GATA-1 also represses transcription through multiple mechanisms. This property may help to explain how GATA-1 regulates hematopoietic lineage commitment and also how GATA1 mutations contribute to cancer, since several directly repressed targets are proto-oncogenes. Third, GATA-1 regulates not only protein coding genes, but also microRNAs, which in turn, modulate erythropoiesis through post-transcriptional mechanisms. Fourth, GATA-1 interacts with other essential erythroid-specific and ubiquitous transcription factors. These protein interactions regulate gene expression by influencing chromatin modifications and controlling three-dimensional proximity between widely spaced DNA elements. Recently, we have combined transcriptome analysis with ChIP-chip and ChIP-seq studies to correlate in vivo occupancy of DNA by GATA-1 and other transcription factors with mRNA expression genome-wide in erythroid cells. These studies better elucidate how GATA-1 recognizes DNA, discriminates between transcriptional activation versus repression and interacts functionally with other nuclear proteins. I will review published and new aspects of our work in these areas. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 820-820
Author(s):  
Wei Li ◽  
Betty S. Pace

Abstract The design and evaluation of therapies for sickle cell disease (SCD) rely on our understanding of hemoglobin accumulation during erythropoiesis and sequential globin gene expression (ε → Gγ → Aγ → δ → β) during development. To gain insights into globin gene switching, we completed time course micorarray analyses of erythroid progenitors to identify trans-factors involved in γ gene activation. Studies were completed to map the pattern of γ and β globin gene expression in progenitors grown from normal peripheral blood mononuclear cells. We compared cells grown in a 2-phase (phase 1, d0-6: SCF, IL-3, IL-6, and GM-CSF and phase 2, d7-25: SCF and EPO) vs. 1-phase (d0-34: SCF, IL-3, and EPO) liquid culture system. From day 0 to 34 in either system cell viability remained >99%. Total RNA was isolated using Trizol and column cleanup (Qiagen). Globin mRNA levels were measured at 2–3 day intervals by quantitative PCR (qPCR). In the 2-phase system γ-globin mRNA>β-globin mRNA up to d14, 4 days of approximately equal expression then β mRNA > γ mRNA by d20. By contrast, in 1-phase studies there was a rapid switch around d20(see graph). We speculate that this difference may be due to the early addition of EPO on d0 therefore we continued our detailed analysis in this system. To confirm that our in vitro system recapitulates in vivo gene expression patterns, we completed studies to ascertain Gγ - vs. Aγ globin mRNA levels. The normalized Gγ:Aγ ratio decreased from ~3:1 on d7 to ~1:1 by d34; These findings were confirmed using two sets of Gγ and Aγ globin primers. We concluded that the 1-phase system recapitulated normal γ/β globin switching and that gene profiling studies to identify the trans-factor involved in switching mechanisms were feasible. We used Discover oligo chips (ArrayIt, Sunnyvale, CA) containing 380 human genes selected from 30 major functional groups including hematopoiesis. To aide interpretation of chip data, cell populations were rated morphologically using Giemsa stained cytospin preps. From d16 on we observed an increase in late erythroid progenitors (normoblasts) from 1% to 71% by d31. After verifying RNA quality by gel inspection of ribosomal molecules, we prepared Cy3 and Cy5 probes for early and late time-point RNA samples respectively. Chip analysis was performed at several time points but d0/21, d7/21, and d21/28 were most informative. Based on Axon GenePixPro 6.0 and Acuity 4.0 software analysis we found the following genes with >1.5-fold change in expression profile (shown as down-regulated/up-regulated genes): d0/21: 33/73, d7/21: 13/25, and d21/28:35/26. Principal component analysis (PCA), hierarchical clusters and self organizing maps were constructed. Gene profiles were correlated with the γ/β switching curve using d7 (γ >β), d21 (γ ~ β), and d28 (γ <β) data. Hematopoietic dataset analysis at d21 revealed 4 candidate γ-globin gene activators including v-myb, upsteam binding transfactor -RNApol1 and 2 zinc finger proteins. Analysis of a d28 dataset revealed 12 proteins involved in γ-globin gene silencing including IL-3, SCF, MAPKKK3, v-raf-1, ATF-2, and glucocorticoid receptor DNA binding factor 1 among others. Gene expression profiles will be validated using qPCR and promising candidates will be tested by forced expression in transient and stable reporter systems. Figure Figure


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 436-436
Author(s):  
Patrick A Navas ◽  
Yongqi Yan ◽  
Minerva E Sanchez ◽  
Ericka M Johnson ◽  
George Stamatoyannopoulos

Abstract Transcription activator-like effector nucleases (TALEN) are engineered proteins used for precise genome editing by generating specific DNA double strand that are repaired by homologous recombination and by non-homologous end joining. TALENs can be used to study gene regulation by deleting putative regulatory elements in the context of the native chromosome and measuring mRNA synthesis. We designed TALENs to delete individual DNAse I-hypersensitive sites (HS) of the β-globin locus control region (LCR) followed by an assessment of globin gene expression and assessment of epigenetic effects in K562 erythroleukemia cells. The β-globin LCR is composed of five HSs and functions as a powerful regulatory element responsible for appropriate levels of the five β-like globin genes during development. Introduction of plasmid DNA encoding a pair of TALENs and targeting individually the flanking region of the HS2, HS3 and HS4 core elements along with a donor 100 base single-stranded oligonucleotide resulted in the successful deletions of each of the three core elements in K562 cells. Individual K562 cells were seeded to produce clones and the mutations were screened by PCR to identify both heterozygous and homozygous clones. The TALEN-mediated 288 bp HS2 core deletion resulted 32 heterozygous (48.5%) and 6 homozygous clones (9.1%) in a total of 66 clones screened. K562 carries three copies of chromosome 11 emphasizing the robustness of TALEN technology to target each of the alleles. In the 199 bp HS3 core deletion, from 113 clones we identified 28 heterozygous (24.8%) and 3 (2.7%) homozygous clones. Lastly, the 301 bp HS4 core deletion yielded 9 homozygous (5.9%) and 12 heterozygous (7.9%) clones from 151 clones screened. Total RNA was isolated from wild-type K562 cells, and from both the heterozygous and homozygous mutant clones and subjected to RNase Protection analysis to quantitate the levels of globin mRNA. Deletion if the HS3 core in K562 cells in a ∼30% reduction in ε-globin mRNA and 2-fold reduction in γ-globin mRNA. A more dramatic effect on globin expression is observed in the HS2 core deletion, as ε- and γ-globin expression is reduced by 2- and 5-fold, respectively. These results suggest that HS2 contributes the majority of the LCR enhancer function in K562 cells. The HS4 core deletion resulted in a modest ∼20% reduction in both ε- and γ-globin expression. TALENs were designed to knockout trans-acting factors implicated to be involved in globin gene regulation and/or globin switching. TALENs bracketing the gene promoters and the first exon of 25 genes encoding either a transcription factor or histone-modifying enzyme were synthesized and post-transfection PCR screens of the transfected pool of K562 cells resulted in the successful identification of 17 gene knockouts. The 17 target genes are PRMT5, LDB1, EIF2AK3, BCL11A, HBSIL, MYB, SOX6, NFE4, NR2F2, NR2C1, NR2C2, CHTOP, NFE2, DNMT3A, RBBP4, MTA2 and MBD2. Single cell clones have been generated by limited dilution of transfected K562 pools and thus far we have identified heterozygous and homozygous clones of 8 of 17 gene knockouts, importantly all clones were identified without selection. The frequency of identifying the knockout clones, represented by the number of clones screened/ number of heterozygous clones/ number of homozygous clones, are as follows: HBS1L (63/3/0), SOX6 (68/13/2), NFE4 (56/13/7), LBD1 (300/2/0), MBD2 (301/0/1), CHTOP (288/66/6), NFE2 (712/44/5) and NR2C1 (96/40/11). The remaining nine gene knockouts and globin gene expression data will be presented at the meetings. These studies highlight a powerful TALEN-mutagenesis platform for target deletions of both cis- and trans-elements to study globin gene switching. TALENs can be synthesized in several days and the screening of the individual clones for the desired knockouts is completed within two weeks. This highly efficient mutagenesis platform will further our understanding of the molecular basis of globin switching. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3057-3063 ◽  
Author(s):  
J. Eric Russell ◽  
Stephen A. Liebhaber

Abstract Genetic mutations that block - or β-globin gene expression in humans can result in severe and frequently lethal thalassemic phenotypes. Homozygous inactivation of the endogenous - or β-globin genes in mice results in corresponding thalassemic syndromes that are uniformly fatal in utero. In the current study, we show that the viability of these mice can be rescued by expression of human embryonic ζ- and -globins, respectively. The capacity of embryonic globins to fully substitute for their adult globin homologues is further demonstrated by showing that ζ- and -globins reverse the hemolytic anemia and abnormal erythrocyte morphology of mice with nonlethal forms of - and β-thalassemia. These results illustrate the potential therapeutic utility of embryonic globins as substitutes for deficient adult globins in thalassemic individuals. Moreover, the capacity of embryonic globins to functionally replace their adult homologues brings into question the physiologic basis for globin gene switching. © 1998 by The American Society of Hematology.


2000 ◽  
Vol 20 (24) ◽  
pp. 9317-9330 ◽  
Author(s):  
Frédéric Bantignies ◽  
Richard H. Goodman ◽  
Sarah M. Smolik

ABSTRACT CREB-binding protein (CBP) is a coactivator for multiple transcription factors that transduce a variety of signaling pathways. Current models propose that CBP enhances gene expression by bridging the signal-responsive transcription factors with components of the basal transcriptional machinery and by augmenting the access of transcription factors to DNA through the acetylation of histones. To define the pathways and proteins that require CBP function in a living organism, we have begun a genetic analysis of CBP in flies. We have overproduced Drosophila melanogaster CBP (dCBP) in a variety of cell types and obtained distinct adult phenotypes. We used an uninflated-wing phenotype, caused by the overexpression of dCBP in specific central nervous system cells, to screen for suppressors of dCBP overactivity. Two genes with mutant versions that act as dominant suppressors of the wing phenotype were identified: thePKA-C1/DCO gene, encoding the catalytic subunit of cyclic AMP protein kinase, and ash1, a member of thetrithorax group (trxG) of chromatin modifiers. Using immunocolocalization, we showed that the ASH1 protein is specifically expressed in the majority of the dCBP-overexpressing cells, suggesting that these proteins have the potential to interact biochemically. This model was confirmed by the findings that the proteins interact strongly in vitro and colocalize at specific sites on polytene chromosomes. The trxG proteins are thought to maintain gene expression during development by creating domains of open chromatin structure. Our results thus implicate a second class of chromatin-associated proteins in mediating dCBP function and imply that dCBP might be involved in the regulation of higher-order chromatin structure.


1994 ◽  
Vol 72 (9-10) ◽  
pp. 377-380 ◽  
Author(s):  
Christi Andrin ◽  
Charlotte Spencer

Gene expression is an extremely complicated process in which several mechanisms are involved. Owing to its developmental and tissue-specific expression, the β-globin gene is an excellent model for studying gene expression. β-Globin gene expression involves an interplay between several different mechanisms. Chromatin structure is thought to be altered by the locus control region (LCR) located far upstream of the β-globin gene locus. As well, multiple transcription factors come into play both in the LCR and in the individual promoters and enhancers of the β-globin genes. The interaction between these then allows for delicate regulation of β-globin gene expression. In the following review the elaborate system of β-globin gene expression will briefly be examined.Key words: β-globin, gene expression, chromatin, GATA-I, NF-E2, developmental regulation.


Blood ◽  
2005 ◽  
Vol 105 (8) ◽  
pp. 3330-3339 ◽  
Author(s):  
Jie Wen ◽  
Suming Huang ◽  
Heather Rogers ◽  
Liliane A. Dickinson ◽  
Terumi Kohwi-Shigematsu ◽  
...  

AbstractSpecial AT-rich binding protein 1 (SATB1) nuclear protein, expressed predominantly in T cells, regulates genes through targeting chromatin remodeling during T-cell maturation. Here we show SATB1 family protein induction during early human adult erythroid progenitor cell differentiation concomitant with ϵ-globin expression. Erythroid differentiation of human erythroleukemia K562 cells by hemin simultaneously increases γ-globin and down-regulates SATB1 family protein and ϵ-globin gene expression. Chromatin immunoprecipitation using anti-SATB1 anti-body shows selective binding in vivo in the β-globin cluster to the hypersensitive site 2 (HS2) in the locus control region (LCR) and to the ϵ-globin promoter. SATB1 overexpression increases ϵ-globin and decreases γ-globin gene expression accompanied by histone hyperacetylation and hypomethylation in chromatin from the ϵ-globin promoter and HS2, and histone hypoacetylation and hypermethylation associated with the γ-globin promoter. In K562 cells SATB1 family protein forms a complex with CREB-binding protein (CBP) important in transcriptional activation. In cotransfection experiments, increase in ϵ-promoter activity by SATB1 was amplified by CBP and blocked by E1A, a CBP inhibitor. Our results suggest that SATB1 can up-regulate the ϵ-globin gene by interaction with specific sites in the β-globin cluster and imply that SATB1 family protein expressed in the erythroid progenitor cells may have a role in globin gene expression during early erythroid differentiation. (Blood. 2005;105:3330-3339)


2018 ◽  
Vol 38 (19) ◽  
Author(s):  
Yong Shen ◽  
MacLean A. Bassett ◽  
Aishwarya Gurumurthy ◽  
Rukiye Nar ◽  
Isaac J. Knudson ◽  
...  

ABSTRACT The organization of the five β-type globin genes on chromosome 11 reflects the timing of expression during erythroid cell development, with the embryonic ε-globin gene being located at the 5′ end, followed by the two fetal γ-globin genes, and with the adult β- and δ-globin genes being located at the 3′ end. Here, we functionally characterized a DNase I-hypersensitive site (HS) located 4 kb upstream of the Gγ-globin gene (HBG-4kb HS). This site is occupied by transcription factors USF1, USF2, EGR1, MafK, and NF-E2 in the human erythroleukemia cell line K562 and exhibits histone modifications typical for enhancers. We generated a synthetic zinc finger (ZF) DNA-binding domain targeting the HBG-4kb HS (HBG-4kb ZF). The HBG-4kb ZF interacted with the target site in vitro and in the context of cells with a high affinity and specificity. Direct delivery of the HBG-4kb ZF to K562 and primary human erythroid cells caused a reduction in γ-globin gene expression which was associated with decreased binding of transcription factors and active histone marks at and downstream of the HS. The data demonstrate that the HBG-4kb HS is important for fetal globin production and suggest that it may act by opening chromatin in a directional manner.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 742-742
Author(s):  
Danitza Nebor ◽  
Raymond F. Robledo ◽  
Aleena Arakaki ◽  
Lionel Blanc ◽  
Luanne L. Peters

Abstract Sickle Cell Disease affects 90-100,000 in the US including 1/500 African-Americans born each year. Elevation of fetal hemoglobin (HbF) by co-inheritance of positive genetic modifiers of HbF expression or hydroxyurea (HU) treatment ameliorates disease severity. Because HU can have significant side effects, novel therapies aimed at elevating postnatal HbF expression are actively being sought. Three major loci modify HbF expression. Together, they account for ~50% of the variation in HbF expression, indicating that additional modifiers exist. Previously, we described the semi-dominant inbred mouse model Nan (neonatal anemia) that carries a missense mutation (E339D) in the second zinc finger of Krüppel-like factor 1 (KLF1/formerly EKLF) causing severe anemia accompanied by a striking failure of hemoglobin switching in Nan/+ mice (homozygotes die in utero). Embryonic βh1 globin expression is upregulated in Nan E14.5 fetal liver and in adult spleen where, remarkably, it accounts for nearly 100% of β-like globin gene expression. To extend these studies, we examined potential mechanisms regulating βh1 expression in adult Nan. Nan expression of Bcl11a, a downstream target of KLF1 that plays a major, conserved role in β-like globin gene switching, is 60-80% that of both untreated and phenylhydrazine treated (PHZ) wild type (WT) controls in the spleen. In peripheral blood, Nan BCL11A protein level is >50% of WT by western blotting. Importantly, prior studies by other investigators showed that newborn Bcl11a heterozygous knockout mice expressing Bcl11a at 50% of WT levels are haplosufficient, showing no differences in β-like globin gene expression. These data indicate that upregulated βh1 expression in Nan is BCL11A independent. We next examined erythropoiesis by flow cytometry using CD44, Ter119, and forward scatter (FSC) as markers. Nucleated erythroid precursors were strikingly decreased in Nan vs. PHZ-treated and phlebotomized (PHB) spleen, unusual in an anemic mouse model. Similar results were obtained using CD71, Ter119 and FSC gating. Despite this, βh1 expression normalized to saline-injected non-anemic controls was dramatically higher in Nan (93.0 ± 13.7, AU, X ± SEM) than either PHZ (3.6 ± 0.7) or PHB (7.4 ± 0.7) mice (p < 0.0001). Thus, increased βh1 in Nan is not simply due to stress erythropoiesis with concomitantly increased erythroid precursors. To analyze βh1 expression genetically, we constructed two Nan congenic lines on two different inbred genetic backgrounds, BALB/cBy and 129/SvImJ. Marked variation in adult spleen βh1 expression levels is seen among the three Nan strains. Similarly, we analyzed βh1 expression in an outbred high resolution mapping population derived from eight inbred strains, the diversity outcross (DO). Substantial variation in expression was seen among DO individuals. These data firmly establish the existence of modifying genes exerting profound influences on βh1 expression. We established an F2 intercross between 129S1/SvImJ-Nan/+ and C57BL/6J mice to take advantage of both Nan and DO mice to identify quantitative trait loci (QTL) modifying βh1 expression. Preliminary statistical analysis of 173 phenotyped (βh1 expression by RT-PCR) and SNP-genotyped F2 Nan/+ mice using R/qtl software identified a highly significant QTL for βh1 on Chr 7 encompassing the β-globin cluster and 3 suggestive QTL (Chr 4, 5 and 14). Analysis of 261 DO mice using QTL/ReL software identified 2 significant QTL (Chr 6, 7) and 6 suggestive QTL (Chr 2, 4[2], 6, 10, 14), with three in common with the QTL identified in F2 mice. Our analyses to date identify QTL overlapping three loci known to influence β-like globin gene switching (the β globin locus, Chr 7; LSD1, Chr 4; Mi-2β, Chr 6), providing proof of principle for our strategy. More importantly, additional loci identified contain no known modifiers, indicating the influence of novel genes. In summary, elevated βh1 expression in adult Nan spleen (1) occurs independently of Bcl11a; (2) is not mediated solely by stress erythropoiesis; (3) is highly influenced by genetic background; and (4) is influenced by novel genetic regulators of β-like globin switching. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document