scholarly journals Mechanisms Regulating Increased Embryonic βh1 Globin Expression in Adult Nan anemic Mice

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 742-742
Author(s):  
Danitza Nebor ◽  
Raymond F. Robledo ◽  
Aleena Arakaki ◽  
Lionel Blanc ◽  
Luanne L. Peters

Abstract Sickle Cell Disease affects 90-100,000 in the US including 1/500 African-Americans born each year. Elevation of fetal hemoglobin (HbF) by co-inheritance of positive genetic modifiers of HbF expression or hydroxyurea (HU) treatment ameliorates disease severity. Because HU can have significant side effects, novel therapies aimed at elevating postnatal HbF expression are actively being sought. Three major loci modify HbF expression. Together, they account for ~50% of the variation in HbF expression, indicating that additional modifiers exist. Previously, we described the semi-dominant inbred mouse model Nan (neonatal anemia) that carries a missense mutation (E339D) in the second zinc finger of Krüppel-like factor 1 (KLF1/formerly EKLF) causing severe anemia accompanied by a striking failure of hemoglobin switching in Nan/+ mice (homozygotes die in utero). Embryonic βh1 globin expression is upregulated in Nan E14.5 fetal liver and in adult spleen where, remarkably, it accounts for nearly 100% of β-like globin gene expression. To extend these studies, we examined potential mechanisms regulating βh1 expression in adult Nan. Nan expression of Bcl11a, a downstream target of KLF1 that plays a major, conserved role in β-like globin gene switching, is 60-80% that of both untreated and phenylhydrazine treated (PHZ) wild type (WT) controls in the spleen. In peripheral blood, Nan BCL11A protein level is >50% of WT by western blotting. Importantly, prior studies by other investigators showed that newborn Bcl11a heterozygous knockout mice expressing Bcl11a at 50% of WT levels are haplosufficient, showing no differences in β-like globin gene expression. These data indicate that upregulated βh1 expression in Nan is BCL11A independent. We next examined erythropoiesis by flow cytometry using CD44, Ter119, and forward scatter (FSC) as markers. Nucleated erythroid precursors were strikingly decreased in Nan vs. PHZ-treated and phlebotomized (PHB) spleen, unusual in an anemic mouse model. Similar results were obtained using CD71, Ter119 and FSC gating. Despite this, βh1 expression normalized to saline-injected non-anemic controls was dramatically higher in Nan (93.0 ± 13.7, AU, X ± SEM) than either PHZ (3.6 ± 0.7) or PHB (7.4 ± 0.7) mice (p < 0.0001). Thus, increased βh1 in Nan is not simply due to stress erythropoiesis with concomitantly increased erythroid precursors. To analyze βh1 expression genetically, we constructed two Nan congenic lines on two different inbred genetic backgrounds, BALB/cBy and 129/SvImJ. Marked variation in adult spleen βh1 expression levels is seen among the three Nan strains. Similarly, we analyzed βh1 expression in an outbred high resolution mapping population derived from eight inbred strains, the diversity outcross (DO). Substantial variation in expression was seen among DO individuals. These data firmly establish the existence of modifying genes exerting profound influences on βh1 expression. We established an F2 intercross between 129S1/SvImJ-Nan/+ and C57BL/6J mice to take advantage of both Nan and DO mice to identify quantitative trait loci (QTL) modifying βh1 expression. Preliminary statistical analysis of 173 phenotyped (βh1 expression by RT-PCR) and SNP-genotyped F2 Nan/+ mice using R/qtl software identified a highly significant QTL for βh1 on Chr 7 encompassing the β-globin cluster and 3 suggestive QTL (Chr 4, 5 and 14). Analysis of 261 DO mice using QTL/ReL software identified 2 significant QTL (Chr 6, 7) and 6 suggestive QTL (Chr 2, 4[2], 6, 10, 14), with three in common with the QTL identified in F2 mice. Our analyses to date identify QTL overlapping three loci known to influence β-like globin gene switching (the β globin locus, Chr 7; LSD1, Chr 4; Mi-2β, Chr 6), providing proof of principle for our strategy. More importantly, additional loci identified contain no known modifiers, indicating the influence of novel genes. In summary, elevated βh1 expression in adult Nan spleen (1) occurs independently of Bcl11a; (2) is not mediated solely by stress erythropoiesis; (3) is highly influenced by genetic background; and (4) is influenced by novel genetic regulators of β-like globin switching. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1020-1020
Author(s):  
Kenneth R Peterson ◽  
Zhen Zhang ◽  
Ee Phie Tan ◽  
Anish Potnis ◽  
Nathan Bushue ◽  
...  

Abstract Patients with sickle cell disease (SCD), caused by mutation of the adult β-globin gene, are phenotypically normal if they carry compensatory mutations that result in continued expression of the fetal γ-globin genes, a condition termed hereditary persistence of fetal hemoglobin (HPFH). Thus, a logical clinical goal for treatment of SCD is to up-regulate γ-globin synthesis using compounds that are specific for increasing fetal hemoglobin (HbF) without pleiotropic effects on cellular homeostasis. Developmental regulation of the γ-globin genes is complex and normal silencing during the adult stage of erythropoiesis likely results from a combination of the loss of transcriptional activators and the gain of transcriptional repressor complexes. One mode of γ-globin silencing occurs at the GATA binding sites located at -566 or -567 relative to the Aγ-globin or Gγ-globin CAP sites respectively, and is mediated through the DNA binding moiety of GATA-1 and its recruitment of co-repressor partners, FOG-1 and Mi-2 (NuRD complex). Modifications of repressor complexes can regulate gene transcription; one such modification is O-GlcNAcylation. The O-GlcNAc post-translational modification is the attachment of a single N-acetyl-glucosamine moiety to either a serine or threonine residue on nuclear and cytoplasmic proteins. O-GlcNAc is added to proteins by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) in response to changes in extracellular signals and nutrients. A dynamic balance in protein levels also exists between these two enzymes; an increase or decrease of one results in a like compensatory change in the other. Thus, the rate of O-GlcNAc addition and removal is a dynamic cycling event that is exquisitely controlled for a given target molecule, which may offer a point of intervention in the turning off or on of gene expression. O-GlcNAcylation is involved in the regulation of many cellular processes such as stress response, cell cycle progression, and transcription. Potentially, O-GlcNAc plays a pivotal role in regulating transcription of the human γ-globin genes. We induced human erythroleukemia cell line K562 with sodium butyrate to differentiate toward the erythroid lineage and observed the expected increase of γ-globin gene expression. A robust increase of γ-globin gene expression was measured after pharmacological inhibition of OGA using Thiamet-G (TMG). Using chromatin immunoprecipitation (ChIP), we demonstrated that OGT and OGA are recruited to the -566 region of the Aγ-globin promoter, the same region occupied by the GATA-1-FOG-1-Mi-2 (NuRD) repressor complex. However, OGT recruitment to this region was decreased when O-GlcNAc levels were artificially elevated by OGA inhibition with TMG. When γ-globin expression was not induced, Mi-2 was modified with O-GlcNAc and interacted with both OGT and OGA. After induction, O-GlcNAcylation of Mi-2 was reduced and Mi2 no longer interacted with OGT. Stable K562 cells were generated in which OGA was knocked down using shRNA. Following induction of these cells with sodium butyrate, γ-globin gene expression was higher compared to control cells. These data suggest that the dynamic cycling of O-GlcNAc on the Mi-2 (NuRD) moiety contributes towards regulation of γ-globin transcription. Concurrent ChIP experiments in human β-globin locus yeast artificial chromosome (β-YAC) transgenic mice demonstrated that GATA-1, Mi2 and OGT were recruited to the -566 Aγ-globin GATA silencer site in day E18 fetal liver when γ-globin is repressed, but not in day E12 fetal liver when γ-globin is expressed. These data demonstrate that O-GlcNAc cycling is a novel mechanism regulating γ-globin gene expression and will provide new avenues to explore in how alterations in gene regulation lead to the onset, progression, and severity of hematological disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1220-1220
Author(s):  
Susanna Harju ◽  
Kenneth R. Peterson

Abstract Autonomous silencing of gene expression is one mechanism operative in the control of human β-like globin gene switching and is best exemplified by the ε-globin gene. Experiments using variously truncated Aγ-globin genes linked to LCR sequences suggested that a region of the Aγ-globin gene between −730 to −378 relative to the mRNA CAP site may function as an adult stage-specific silencer element. A 5.4 Kb marked Aγ-globin gene (Aγm) inserted between LCR 5′HS1 and the ε-globin gene in a β-YAC (Aγm 5′ ε β-YAC) was silenced in transgenic mice during adult definitive erythropoiesis, even in the absence of an adult β-globin gene. In contrast, when a marked β-globin gene (βm) was inserted in this same location in another β-YAC (βm 5′ ε β-YAC), the βm-globin gene was expressed throughout ontogeny. From these data we concluded that: 1) any gene located near the LCR will be strongly expressed throughout ontogeny, unless some gene-specific silencing mechanism exists, 2) competition between the γ- and β-globin genes for interaction with the LCR is not the exclusive mechanism controlling γ- to β-globin gene switching, and 3) that the Aγm-globin gene was autonomously silenced. A -730 to -378 deletion of the Aγm-globin gene was introduced into the Aγm 5′ ε β-YAC via homologous recombination to produce a Δ1s Aγm 5′ ε β-YAC. This YAC was microinjected and six founders were obtained. Four transgenic lines were established carrying at least one full-length β-globin locus and two were established that lacked the adult β-globin gene. All founders containing an intact β-globin gene expressed the Δ1s Aγm-globin during adult erythropoiesis (45% – 122% relative to human β-globin expression). In one line examined in detail, the Δ1s Aγm-globin gene was expressed in the embryonic yolk sac, fetal liver, and adult blood. ε-globin gene expression was not detected in the embryonic yolk sac and expression of the normally located γ-globin genes was not observed at any developmental stage. β-globin gene expression was observed in the fetal liver and adult blood, although its expression was decreased. To further delineate the function of the Δ1s fragment, transient transfection assays to test silencer function and protein-DNA interaction assays were performed. Silencer activity of the352 bp Δ1s fragment was examined using a series of pGL2 luciferase reporter plasmids that were synthesized to include the Δ1s fragment; these were electroporated into various cells. Electrophoretic mobility shift assays (EMSAs) and DNAse I footprinting were employed to begin assessment of protein binding within the Δ1s fragment. A 50 bp DNA fragment spanning −713 to −664 of the Δ1s element was used in EMSAs; DNA binding activity was observed in K562 nuclear extracts. These preliminary data suggest that the −730 to −378 γ-globin gene silencer binds a repressor protein complex.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1210-1210
Author(s):  
Lauren Sterner ◽  
Toru Miyazaki ◽  
Larry Swift ◽  
Ann Dean ◽  
Jane Little

Abstract We examined the effects of short chain fatty acids (SCFAs) on globin gene expression during development. We studied globin gene expression in transgenic mice that have endogenous elevations in the SCFA propionate due to a knockout (KO) of the gene for propionyl CoA carboxylase subunit A (PCCA, Miyazaki et al. JBC, 2001 Sep 21;276(38):35995–9). Serum propionate levels measured by gas chromatography were 2.5 to 3.6 mgms/ml in 2 adult PCCA KO mice and were undetectable in 2 wild type (wt) or heterozygous control adult mice. Embryonic PCCA KO offspring had propionate levels of 2.3 and 5.0 μgms/100 mgms of fetal liver, at day 16.5 (E16.5), while wt or heterozygotes at E14.5 had levels &lt;1 μgm/100 mgms. Analysis of expression from alpha (α), beta major (βmaj), embryonic beta-type epsilon-y (εy), embryonic beta-type beta H1 (βH1) and embryonic alpha-type zeta (ζ) globin genes plus 18S ribosomal RNA as a control was undertaken using real-time PCR with gene-specific primers and taqman probes. cDNA was reverse-transcribed from the mRNA of yolk sac (YS) and fetal liver of PCCA KO and wt progeny of more than one litter from timed pregnancies. Individual PCCA embryos at E10 (n=10), E12 (n=9), and E14 (n=7) were analyzed for globin gene expression, normalized to18S expression and were compared to age-matched wt embryos (n&gt;=4 for each time point). As expected, embryonic alpha- and beta-type globin gene expression (ζ and βH1 plus εy) predominated in E 10 YS, and definitive globin gene expression, α and βmaj, predominated in E12 or E14 fetal liver. Expression from embryonic alpha-type globin was calculated as normalized ζ/(ζ+α) and from embryonic beta-type globins as normalized (βH1+εy)/(βH1+εy+βmaj), see table. Embryonic globin gene expression was statistically significantly increased in PCCA KO E12 YS at 1.3 fold relative to wt ζ and in PCCA KO E14 YS at 1.8 fold and 2.1 fold relative to wt ζ or βH1 and εy respectively (p&lt;.05). No increase in embryonic globin mRNA was seen in adult PCCA KO animals. We conclude that elevations of SCFAs during normal murine development causes a persistence of both embryonic alpha-type and embryonic beta-type globin gene expression during primitive, but not definitive, erythropoiesis, suggesting that SCFAs cannot reactivate silenced murine embryonic globin genes in the absence of erythroid stress. Embryonic Globin Gene Expression in Mice with Endogenous Elevations of SCFAs % Expression PCCA KO wild type p value, t test E10 ζ Yolk Sac 53+/− 2 nd E10 βH1 & ε y Yolk Sac 99 +/− 0.3 nd E12 ζ Yolk Sac 32 +/− 3 25 +/− 1 p &lt; .05 E12 βH1 & ε y Yolk Sac 77 +/− 6 74 +/− 3 ns E14 ζ Yolk Sac 7 +/− 1.5 4 +/− 1.4 p &lt; .05 E14 βH1 & ε y Yolk Sac 13 +/− 6 6 +/− 0.5 p &lt; .05 E12 ζ Fetal Liver 11 +/− 4 9 +/− 2 ns E12 βH1 & ε y Fetal Liver 13 +/− 5 13+/− 3 ns E14 ζ Fetal Liver 1 +/− 0.4 0.7 +/− 0.2 ns E14 βH1 & εy Fetal Liver 6 +/− 1.8 4 +/− 1 ns


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 820-820
Author(s):  
Wei Li ◽  
Betty S. Pace

Abstract The design and evaluation of therapies for sickle cell disease (SCD) rely on our understanding of hemoglobin accumulation during erythropoiesis and sequential globin gene expression (ε → Gγ → Aγ → δ → β) during development. To gain insights into globin gene switching, we completed time course micorarray analyses of erythroid progenitors to identify trans-factors involved in γ gene activation. Studies were completed to map the pattern of γ and β globin gene expression in progenitors grown from normal peripheral blood mononuclear cells. We compared cells grown in a 2-phase (phase 1, d0-6: SCF, IL-3, IL-6, and GM-CSF and phase 2, d7-25: SCF and EPO) vs. 1-phase (d0-34: SCF, IL-3, and EPO) liquid culture system. From day 0 to 34 in either system cell viability remained &gt;99%. Total RNA was isolated using Trizol and column cleanup (Qiagen). Globin mRNA levels were measured at 2–3 day intervals by quantitative PCR (qPCR). In the 2-phase system γ-globin mRNA&gt;β-globin mRNA up to d14, 4 days of approximately equal expression then β mRNA &gt; γ mRNA by d20. By contrast, in 1-phase studies there was a rapid switch around d20(see graph). We speculate that this difference may be due to the early addition of EPO on d0 therefore we continued our detailed analysis in this system. To confirm that our in vitro system recapitulates in vivo gene expression patterns, we completed studies to ascertain Gγ - vs. Aγ globin mRNA levels. The normalized Gγ:Aγ ratio decreased from ~3:1 on d7 to ~1:1 by d34; These findings were confirmed using two sets of Gγ and Aγ globin primers. We concluded that the 1-phase system recapitulated normal γ/β globin switching and that gene profiling studies to identify the trans-factor involved in switching mechanisms were feasible. We used Discover oligo chips (ArrayIt, Sunnyvale, CA) containing 380 human genes selected from 30 major functional groups including hematopoiesis. To aide interpretation of chip data, cell populations were rated morphologically using Giemsa stained cytospin preps. From d16 on we observed an increase in late erythroid progenitors (normoblasts) from 1% to 71% by d31. After verifying RNA quality by gel inspection of ribosomal molecules, we prepared Cy3 and Cy5 probes for early and late time-point RNA samples respectively. Chip analysis was performed at several time points but d0/21, d7/21, and d21/28 were most informative. Based on Axon GenePixPro 6.0 and Acuity 4.0 software analysis we found the following genes with &gt;1.5-fold change in expression profile (shown as down-regulated/up-regulated genes): d0/21: 33/73, d7/21: 13/25, and d21/28:35/26. Principal component analysis (PCA), hierarchical clusters and self organizing maps were constructed. Gene profiles were correlated with the γ/β switching curve using d7 (γ &gt;β), d21 (γ ~ β), and d28 (γ &lt;β) data. Hematopoietic dataset analysis at d21 revealed 4 candidate γ-globin gene activators including v-myb, upsteam binding transfactor -RNApol1 and 2 zinc finger proteins. Analysis of a d28 dataset revealed 12 proteins involved in γ-globin gene silencing including IL-3, SCF, MAPKKK3, v-raf-1, ATF-2, and glucocorticoid receptor DNA binding factor 1 among others. Gene expression profiles will be validated using qPCR and promising candidates will be tested by forced expression in transient and stable reporter systems. Figure Figure


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-7-SCI-7
Author(s):  
Mitchell J. Weiss

Abstract Abstract SCI-7 Efforts to define the mechanisms of globin gene expression and transcriptional control of erythrocyte formation have provided key insights into our understanding of developmental hematopoiesis. Our group has focused on GATA-1, a zinc finger protein that was initially identified through its ability to bind a conserved cis element that regulates globin gene expression. GATA-1 is essential for erythroid development and mutations in the GATA1 gene are associated with human cytopenias and leukemia. Several general principles have emerged through studies to define the mechanisms of GATA-1 action. First, GATA-1 activates not only globin genes, but also virtually every gene that defines the erythroid phenotype. This observation sparked successful gene discovery efforts to identify new components of erythroid development and physiology. Second, GATA-1 also represses transcription through multiple mechanisms. This property may help to explain how GATA-1 regulates hematopoietic lineage commitment and also how GATA1 mutations contribute to cancer, since several directly repressed targets are proto-oncogenes. Third, GATA-1 regulates not only protein coding genes, but also microRNAs, which in turn, modulate erythropoiesis through post-transcriptional mechanisms. Fourth, GATA-1 interacts with other essential erythroid-specific and ubiquitous transcription factors. These protein interactions regulate gene expression by influencing chromatin modifications and controlling three-dimensional proximity between widely spaced DNA elements. Recently, we have combined transcriptome analysis with ChIP-chip and ChIP-seq studies to correlate in vivo occupancy of DNA by GATA-1 and other transcription factors with mRNA expression genome-wide in erythroid cells. These studies better elucidate how GATA-1 recognizes DNA, discriminates between transcriptional activation versus repression and interacts functionally with other nuclear proteins. I will review published and new aspects of our work in these areas. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 436-436
Author(s):  
Patrick A Navas ◽  
Yongqi Yan ◽  
Minerva E Sanchez ◽  
Ericka M Johnson ◽  
George Stamatoyannopoulos

Abstract Transcription activator-like effector nucleases (TALEN) are engineered proteins used for precise genome editing by generating specific DNA double strand that are repaired by homologous recombination and by non-homologous end joining. TALENs can be used to study gene regulation by deleting putative regulatory elements in the context of the native chromosome and measuring mRNA synthesis. We designed TALENs to delete individual DNAse I-hypersensitive sites (HS) of the β-globin locus control region (LCR) followed by an assessment of globin gene expression and assessment of epigenetic effects in K562 erythroleukemia cells. The β-globin LCR is composed of five HSs and functions as a powerful regulatory element responsible for appropriate levels of the five β-like globin genes during development. Introduction of plasmid DNA encoding a pair of TALENs and targeting individually the flanking region of the HS2, HS3 and HS4 core elements along with a donor 100 base single-stranded oligonucleotide resulted in the successful deletions of each of the three core elements in K562 cells. Individual K562 cells were seeded to produce clones and the mutations were screened by PCR to identify both heterozygous and homozygous clones. The TALEN-mediated 288 bp HS2 core deletion resulted 32 heterozygous (48.5%) and 6 homozygous clones (9.1%) in a total of 66 clones screened. K562 carries three copies of chromosome 11 emphasizing the robustness of TALEN technology to target each of the alleles. In the 199 bp HS3 core deletion, from 113 clones we identified 28 heterozygous (24.8%) and 3 (2.7%) homozygous clones. Lastly, the 301 bp HS4 core deletion yielded 9 homozygous (5.9%) and 12 heterozygous (7.9%) clones from 151 clones screened. Total RNA was isolated from wild-type K562 cells, and from both the heterozygous and homozygous mutant clones and subjected to RNase Protection analysis to quantitate the levels of globin mRNA. Deletion if the HS3 core in K562 cells in a ∼30% reduction in ε-globin mRNA and 2-fold reduction in γ-globin mRNA. A more dramatic effect on globin expression is observed in the HS2 core deletion, as ε- and γ-globin expression is reduced by 2- and 5-fold, respectively. These results suggest that HS2 contributes the majority of the LCR enhancer function in K562 cells. The HS4 core deletion resulted in a modest ∼20% reduction in both ε- and γ-globin expression. TALENs were designed to knockout trans-acting factors implicated to be involved in globin gene regulation and/or globin switching. TALENs bracketing the gene promoters and the first exon of 25 genes encoding either a transcription factor or histone-modifying enzyme were synthesized and post-transfection PCR screens of the transfected pool of K562 cells resulted in the successful identification of 17 gene knockouts. The 17 target genes are PRMT5, LDB1, EIF2AK3, BCL11A, HBSIL, MYB, SOX6, NFE4, NR2F2, NR2C1, NR2C2, CHTOP, NFE2, DNMT3A, RBBP4, MTA2 and MBD2. Single cell clones have been generated by limited dilution of transfected K562 pools and thus far we have identified heterozygous and homozygous clones of 8 of 17 gene knockouts, importantly all clones were identified without selection. The frequency of identifying the knockout clones, represented by the number of clones screened/ number of heterozygous clones/ number of homozygous clones, are as follows: HBS1L (63/3/0), SOX6 (68/13/2), NFE4 (56/13/7), LBD1 (300/2/0), MBD2 (301/0/1), CHTOP (288/66/6), NFE2 (712/44/5) and NR2C1 (96/40/11). The remaining nine gene knockouts and globin gene expression data will be presented at the meetings. These studies highlight a powerful TALEN-mutagenesis platform for target deletions of both cis- and trans-elements to study globin gene switching. TALENs can be synthesized in several days and the screening of the individual clones for the desired knockouts is completed within two weeks. This highly efficient mutagenesis platform will further our understanding of the molecular basis of globin switching. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3057-3063 ◽  
Author(s):  
J. Eric Russell ◽  
Stephen A. Liebhaber

Abstract Genetic mutations that block - or β-globin gene expression in humans can result in severe and frequently lethal thalassemic phenotypes. Homozygous inactivation of the endogenous - or β-globin genes in mice results in corresponding thalassemic syndromes that are uniformly fatal in utero. In the current study, we show that the viability of these mice can be rescued by expression of human embryonic ζ- and -globins, respectively. The capacity of embryonic globins to fully substitute for their adult globin homologues is further demonstrated by showing that ζ- and -globins reverse the hemolytic anemia and abnormal erythrocyte morphology of mice with nonlethal forms of - and β-thalassemia. These results illustrate the potential therapeutic utility of embryonic globins as substitutes for deficient adult globins in thalassemic individuals. Moreover, the capacity of embryonic globins to functionally replace their adult homologues brings into question the physiologic basis for globin gene switching. © 1998 by The American Society of Hematology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1206-1206
Author(s):  
Donald Lavelle ◽  
Kestas Vaitkus ◽  
Maria Hankewych ◽  
Mahipal Singh ◽  
Joseph DeSimone

Abstract The pattern of globin gene expression during development is conserved in all simian primates, but not in prosimians or other species. Therefore knowledge of the mechanisms regulating globin gene expression in animal models such as the baboon (P. anubis) is directly applicable to human. This investigation addressed the role of chromatin structure in developmental regulation of globin gene expression. DNA methylation of the ε- and γ-gene promoters and covalent histone modifications in chromatin associated with the ε- γ- and β-globin gene promoters have been investigated in 40d fetal primitive nucleated yolk sac-derived RBCs, and definitive erythroid precursor cells from fetal liver (40d to 56d), fetal BM (154d to 160d), and BM from phlebotomized adults. The methylation status of 3 CpG sites in the ε-globin promoter and 5 CpG sites in the γ-globin promoter was analyzed by sequencing 10 cloned PCR products of each sample following bisulfite modification. The ε-globin promoter was unmethylated in 40d primitive yolk-sac derived RBCs. Moderate methylation of the ε-globin promoter was observed in 40d fetal liver (33%: 50%) and was increased in fetal liver samples obtained 2 weeks later in gestation (54d: 76.6%, 56d: 79.1%) to levels observed in late term fetal BM ( 154d: 80%, 156d: 96.6%, 160 d: 93.1%) and adult BM (84.1%; n=2). Methylation of the γ-globin promoter was lowest in 40d primitive RBC (0%) and early fetal liver (40d: 3.1%, 54d: 0%, 56d: 7.1%) and was moderately increased in fetal BM (154d: 38.6%, 156d: 20%, 160d: 30%) compared to adult BM ( 67.3%; n=3). Levels of ac-H3, ac-H4, dimethyl H3 lys4 (H3-dimeK4), dimethyl H3 lys79 (H3-meK79), dimethyl H3 lys36 (H3-meK36), and RNA pol II bound to the ε-, γ-, and β-globin promoters were determined by immunoprecipitation of formaldehyde-fixed, sheared chromatin (ChIP) followed by real time PCR. The amount of RNA pol II, ac-H3, and ac-H4 associated with each globin promoter correlated with developmental-specific gene expression and differed from the pattern of H3-meK79 and H3-meK4 associated with these promoters during development. The amount of H3-meK79 and H3-dimeK4 bound to the the ε- and γ-globin promoters in 40d primitive RBC and fetal liver erythroid precursors (54 and 56d) was 5 times greater than to the β-globin promoter, while similar levels of each (< 2 fold difference) were associated with all three promoters in fetal and adult bone marrow cells. In contrast, the highest level of H3-meK36 was associated with developmentally silenced genes. The amount of H3-meK36 bound to the ε promoter was 2–3 fold higher than to the γ and β promoters in fetal liver (54 and 56d). Similar levels (<2 fold difference) of H3-meK36 were associated with the γ and ε promoters in late term fetal and adult BM and were 2–6 fold greater than bound to the β promoter. We conclude that the chromatin cofiguration of the β-globin locus undergoes distinctive changes associated with both gene activation and silencing during development. Changes in the levels of H3-dimeK4 and H3-meK79 may reflect generalized domain opening, while high levels of ac-H3 and ac-H4 are bound to the promoters of activated genes. In contrast, gene silencing is correlated with increased DNA methylation and enrichment of H3-meK36 bound to the promoters. Thus the baboon model offers unique opportunities to study developmental regulation of globin gene expression.


Sign in / Sign up

Export Citation Format

Share Document