Angle of Camera View Influences Resumption Lag in a Visual-Motor Task

Author(s):  
Natalie R. Lodinger ◽  
Patricia R. DeLucia

Prior research on interruptions examined the effects of different characteristics of the primary and interrupting tasks on performance of the primary task. One measure is the resumption lag– the time between the end of the interrupting task and the next action in the resumed primary task (Altmann & Trafton, 2004). Prior research showed that an increase in the workload of a task results in an increase in resumption lag (Iqbal & Bailey, 2005). A common feature of prior studies of resumption lag is the use of computer-based tasks. However, interruptions occur in other types of tasks, such as laparoscopic surgery in which errors can result in serious consequences for the patient (Gillespie Chaboyer & Fairweather, 2012). Common interruptions during laparoscopic surgery include equipment failures and communication with team members (e.g., Gillespie et al.,2012). In laparoscopic surgery, a small incision is made in the patient, and a laparoscope is placed inside the body cavity. The surgeon typically views the surgical site on a two-dimensional screen rather than in three-dimensions as in open surgery (Chan et al., 1997). The two-dimensional camera image imposes perceptual and cognitive demands on the surgeon, such as impaired depth perception (Chan et al., 1997; DeLucia & Griswold, 2011) and a limited field-of-view of the site (DeLucia & Griswold, 2011). The present study examined whether top-view and side-view camera angles, which putatively impose different cognitive demands (DeLucia & Griswold, 2011), would differentially affect the resumption lag in a visual-motor task. Participants completed a peg transfer task in which they were interrupted with a mental rotation task of different durations and rotation angles. The duration of the mental rotation task was either short (6 s) or long (12 s), representing relatively low and high cognitive demands, respectively. Smaller rotation angles (0, 60, and 300 degrees from vertical) and greater rotation angles (120, 180 and 240 degrees from vertical) presumably imposed smaller and larger cognitive demands, respectively. Resumption lag was measured as the time between the end of the interruption and the first time a peg was touched in the resumed peg transfer task. Participants needed significantly more time to resume the peg transfer task with the side view compared to the top view, and with the longer mental rotation task duration compared to the shorter duration. The main effect of rotation angle was not significant. The side view also resulted in higher ratings of mental demand, effort, and frustration on the Raw Task Load Index (RTLX), the ratings-only portion of the NASA-TLX (Hart, 2006). Thus, a visual-motor task that is higher in cognitive demand can result in more time to resume a primary task following an interruption. Practical implications are that camera viewing angles associated with lower cognitive demands should be preferred in the operating room when feasible, and that interruption durations should be minimized. However, results also indicated that the side view resulted in longer movement times than the top view, even without an interruption, suggesting that factors other than cognitive demands may account for effects of camera angle on resumption lag; this should be examined in future research.

Author(s):  
Natalie R. Lodinger ◽  
Patricia R. DeLucia

Objective: To determine whether top-view and side-view camera angles, which putatively impose different cognitive demands, differentially affect the resumption lag in a visual-motor task relevant to laparoscopic surgery. Background: Prior research showed that the time to resume a primary task after performing an interrupting task (resumption lag) increases with increases in the subjective workload of the primary task. Camera views used in laparoscopic surgery provide different views of the anatomy and have different cognitive costs and associated levels of workload. Method: Participants completed a peg transfer task while interrupted with a mental rotation task of different durations and angles of stimulus rotation. Results: Participants required significantly more time to resume the peg transfer task when using a side view than a top view and when interrupted for a longer duration. Participants’ ratings of subjective workload were consistent with these patterns of performance data; the side view resulted in longer resumption lags and was rated as greater in mental demand. Additionally, the time needed to resume the peg transfer task decreased across trials for both views. Conclusion: More time is required to resume an interrupted visual-motor task when it is more cognitively demanding than when it is less cognitively demanding possibly due to needing more time to learn the visual-motor mapping of the task higher in cognitive demand. Application: Training for laparoscopic surgery should include interruptions to allow surgeons to practice resuming a surgery-related task after an interruption and consequently shorten the time needed to resume the surgery-related task.


2021 ◽  
pp. 1-13
Author(s):  
Maya Danneels ◽  
Ruth Van Hecke ◽  
Laura Leyssens ◽  
Dirk Cambier ◽  
Raymond van de Berg ◽  
...  

PURPOSE: Aside from typical symptoms such as dizziness and vertigo, persons with vestibular disorders often have cognitive and motor problems. These symptoms have been assessed in single-task condition. However, dual-tasks assessing cognitive-motor interference might be an added value as they reflect daily life situations better. Therefore, the 2BALANCE protocol was developed. In the current study, the test-retest reliability of this protocol was assessed. METHODS: The 2BALANCE protocol was performed twice in 20 healthy young adults with an in-between test interval of two weeks. Two motor tasks and five different cognitive tasks were performed in single and dual-task condition. Intraclass correlation coefficients (ICC), the standard error of measurement, and the minimal detectable difference were calculated. RESULTS: All cognitive tasks, with the exception of the mental rotation task, had favorable reliability results (0.26≤ICC≤0.91). The dynamic motor task indicated overall substantial reliability values in all conditions (0.67≤ICC≤0.98). Similar results were found for the static motor task during dual-tasking (0.50≤ICC≤0.92), but were slightly lower in single-task condition (–0.26≤ICC≤0.75). CONCLUSIONS: The 2BALANCE protocol was overall consistent across trials. However, the mental rotation task showed lowest reliability values.


Author(s):  
Peter Khooshabeh ◽  
Mary Hegarty ◽  
Thomas F. Shipley

Two experiments tested the hypothesis that imagery ability and figural complexity interact to affect the choice of mental rotation strategies. Participants performed the Shepard and Metzler (1971) mental rotation task. On half of the trials, the 3-D figures were manipulated to create “fragmented” figures, with some cubes missing. Good imagers were less accurate and had longer response times on fragmented figures than on complete figures. Poor imagers performed similarly on fragmented and complete figures. These results suggest that good imagers use holistic mental rotation strategies by default, but switch to alternative strategies depending on task demands, whereas poor imagers are less flexible and use piecemeal strategies regardless of the task demands.


Ergonomics ◽  
1989 ◽  
Vol 32 (4) ◽  
pp. 387-399 ◽  
Author(s):  
CHARLES J. WORRINGHAM ◽  
DENNIS B. BERINGER

2017 ◽  
Vol 41 (S1) ◽  
pp. S409-S409
Author(s):  
A. Gadad ◽  
D.Y.C.J. Reddy ◽  
D.G. Venkatasubramanian ◽  
D.J. C.N

Aim of the studyTo study the neural substrates of insight in OCD by comparing patients with good insight, patients with poor insight and matched healthy controls using functional MRI.MethodologySubjects were recruited from among patients attending OCD clinic, adult psychiatry services and psychiatry ward inpatients of National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore. They were further divided into ‘good insight’ (n = 30) and ‘poor insight’ (n = 14) using Brown's assessment of belief's scale. Control subjects (n = 30) were recruited from consenting volunteers. 3 T MRI was used mental rotation task was paradigm used for fMRI and analysis was done by SPM 8.ResultsPoor insight patients and good insight patients comparison revealed differential activation in left superior/medial frontal gyrus (corresponding to the DLPFC). A negative correlation between BABS score and activation of right inferior parietal lobule. Mental rotation task behavioural data results: OCD patients as a group had significantly lower accuracy compared to healthy controls. Poor insight group had significantly decreased accuracy ratio compared to good insight group and healthy controls. A negative correlation was noted between BABS score and accuracy ratio, indicating that poorer the insight, greater the errors during the active task.ConclusionInsight has been important prognostic factor in OCD. Poor insight patients had specific deficits in left medial frontal gyrus and right inferior parietal lobule as compared to good insight patients and healthy controls. Together, these indicate that insight has a strong neurobiological underpinning in OCD.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2011 ◽  
Vol 23 (6) ◽  
pp. 1395-1404 ◽  
Author(s):  
Ruth Seurinck ◽  
Floris P. de Lange ◽  
Erik Achten ◽  
Guy Vingerhoets

A growing number of studies show that visual mental imagery recruits the same brain areas as visual perception. Although the necessity of hV5/MT+ for motion perception has been revealed by means of TMS, its relevance for motion imagery remains unclear. We induced a direction-selective adaptation in hV5/MT+ by means of an MAE while subjects performed a mental rotation task that elicits imagined motion. We concurrently measured behavioral performance and neural activity with fMRI, enabling us to directly assess the effect of a perturbation of hV5/MT+ on other cortical areas involved in the mental rotation task. The activity in hV5/MT+ increased as more mental rotation was required, and the perturbation of hV5/MT+ affected behavioral performance as well as the neural activity in this area. Moreover, several regions in the posterior parietal cortex were also affected by this perturbation. Our results show that hV5/MT+ is required for imagined visual motion and engages in an interaction with parietal cortex during this cognitive process.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000011992
Author(s):  
David J Lin ◽  
Kimberly S Erler ◽  
Samuel B Snider ◽  
Anna K Bonkhoff ◽  
Julie A DiCarlo ◽  
...  

Objective:To test the hypothesis that cognitive demands influence motor performance during recovery from acute stroke, we tested acute stroke patients on two motor tasks with different cognitive demands and related task performance to cognitive impairment and neuroanatomic injury.Methods:We assessed the contralesional and ipsilesional upper extremities of a cohort of 50 patients with weakness after unilateral acute ischemic stroke at three timepoints with two tasks: the Box & Blocks Test, a task with greater cognitive demand, and Grip Strength, a simple and ballistic motor task. We compared performance on the two tasks, related motor performance to cognitive dysfunction, and used voxel-based lesion symptom mapping to determine neuroanatomical sites associated with motor performance.Results:Consistent across contralesional and ipsilesional upper extremities and most pronounced immediately post-stroke, Box & Blocks scores were significantly more impaired than Grip Strength scores. The presence of cognitive dysfunction significantly explained up to 33% of variance in Box & Blocks performance but was not associated with Grip Strength performance. While Grip Strength performance was associated with injury largely restricted to sensorimotor regions, Box & Blocks performance was associated with broad injury outside sensorimotor structures, particularly the dorsal anterior insula, a region known to be important for complex cognitive function.Conclusions:Altogether, these results suggest that cognitive demands influence upper extremity motor performance during recovery from acute stroke. Our findings emphasize the integrated nature of motor and cognitive systems and suggest that it is critical to consider cognitive demands during motor testing and neurorehabilitation after stroke.


2018 ◽  
Vol 44 (2) ◽  
pp. 103-115 ◽  
Author(s):  
Wioletta Karina Ozga ◽  
Dariusz Zapała ◽  
Piotr Wierzgała ◽  
Paweł Augustynowicz ◽  
Robert Porzak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document