Rapid Communication Display Technology Efficiency in a Multi-Task Environment

1988 ◽  
Vol 32 (19) ◽  
pp. 1395-1399 ◽  
Author(s):  
Sarah Swierenga Osgood ◽  
Kenneth R. Boff ◽  
Rebecca S. Donovan

The present study examined the advantage of Rapid Communication (RAP-COM) Display Technology over conventional spatially arrayed displays in the context of secondary task demands. This research represents an early step in assessing the use of RAP-COM display techniques in multi-task environments. Eight subjects were instructed to respond to briefly presented visual stimuli, while concurrently performing an unstable tracking task at two levels of difficulty. Duration thresholds, obtained using a moment-to-moment adaptive tracking performance procedure, were collected for RAP-COM and spatially arrayed displays while RMS error scores were collected from the unstable tracking task performance. Information transfer rates for the RAP-COM technique were faster than for the spatially distributed array under both the single and dual task conditions. Regardless of secondary tracking task difficulty, subjects were able to maintain primary task performance levels on RAP-COM and spatial display tasks, although a decrement in tracking performance was seen.

2002 ◽  
Vol 55 (4) ◽  
pp. 1211-1240 ◽  
Author(s):  
Sian L. Beilock ◽  
Sarah A. Wierenga ◽  
Thomas H. Carr

Two experiments explored the attention and memory processes governing sensorimotor skill. Experiment 1 compared novice and experienced golf putting performance in single-task (putting in isolation) and dual-task conditions (putting while performing an auditory word search task). At specific intervals, participants also produced episodic descriptions of specific putts. Experiment 2 assessed novice performance following training on the same putting task. In Experiment 1, experienced golfers did not differ in putting accuracy from single- to dual-task conditions and, compared to novices, had higher recognition memory for words heard while putting but diminished episodic memories of specific putts. However, when using an s-shaped arbitrarily weighted “funny putter” designed to disrupt the mechanics of skill execution, experienced golfers produced extensive episodic memories of specific putts but showed decreased dual-task putting accuracy and recognition memory for secondary task words. Trained novices produced results intermediate between the untrained novices and experienced golfers. As predicted by current theories of practice-based automaticity, expertise leads to proceduralized control that does not require constant attention. Resources are free to devote to secondary task demands, yet episodic memory for primary task performance is impoverished. Novel task constraints (e.g., a funny putter) increase attention to execution, compromising secondary task performance but enhancing memory for skill execution.


1988 ◽  
Vol 32 (19) ◽  
pp. 1466-1470 ◽  
Author(s):  
Gabriel Spitz

The extent and nature of the ability to control the allocation of mental resources between the components of a dual task was investigated in three separate experiments. Using a variable priority (demand) methodology it was found that subjects could manipulate their performance level, however their ability to meet specific demand levels was limited. Training subjects under single or dual-task conditions using a wide range of task demand significantly improved dual task performance and degree of control over resource allocation as compared to performance following practice under a narrow range of task demands or under single task fixed demand conditions. Single task performance among all groups improved to the same degree. It was concluded that training subjects under a wide range of task demands increases the range of performance levels over which mental resources can be flexibly allocated for those tasks and improves time sharing performance. Implications for the design of training for complex task performance are discussed.


1989 ◽  
Vol 33 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Maxwell J. Wells ◽  
Michael Venturino

Ten subjects performed a task on a head-coupled simulator using various sized fields-of-view (FOVs). The task required them to visually acquire, remember the location of, monitor and shoot 3 or 6 objects. In addition they were required to perform a secondary tracking task. Performance at monitoring and shooting the objects decreased with decreasing FOV size and increasing number of objects. Secondary task performance also decreased with decreasing FOV. The ability to recall the location of objects was unaffected by changes in FOV size. However, tracking performance was degraded while subjects used smaller FOVS to find and learn the location of objects. The results indicate that although visual search performance can be maintained with small FOVs, it is done in a manner which may compromise performance at other tasks.


Author(s):  
Karl F. Van Orden ◽  
Tzyy-Ping Jung ◽  
Scott Makeig

Five concurrent eye activity measures were used to model fatigue-related changes in performance during a visual compensatory tracking task. Five subjects demonstrated considerable variations in performance level within two 53-min testing sessions during which continuous video-based eye activity measures were obtained. For each subject, moving estimates of blink duration and frequency, fixation duration and frequency, and mean pupil diameter from one session were used to train an artificial neural network to produce moving estimates of changes in mean tracking performance during the same session. Applied to eye tracking data from a second session, the same networks produced moving estimates of tracking performance that were highly correlated with actual performance changes ( R2=0.65, range 0.30–0.89 across ten sessions). The results suggest that information from multiple eye measures may be combined to produce individualized and accurate estimates of sub-minute scale changes in alertness during continuous task performance.


2019 ◽  
Vol 62 (7) ◽  
pp. 2099-2117 ◽  
Author(s):  
Jason A. Whitfield ◽  
Zoe Kriegel ◽  
Adam M. Fullenkamp ◽  
Daryush D. Mehta

Purpose Prior investigations suggest that simultaneous performance of more than 1 motor-oriented task may exacerbate speech motor deficits in individuals with Parkinson disease (PD). The purpose of the current investigation was to examine the extent to which performing a low-demand manual task affected the connected speech in individuals with and without PD. Method Individuals with PD and neurologically healthy controls performed speech tasks (reading and extemporaneous speech tasks) and an oscillatory manual task (a counterclockwise circle-drawing task) in isolation (single-task condition) and concurrently (dual-task condition). Results Relative to speech task performance, no changes in speech acoustics were observed for either group when the low-demand motor task was performed with the concurrent reading tasks. Speakers with PD exhibited a significant decrease in pause duration between the single-task (speech only) and dual-task conditions for the extemporaneous speech task, whereas control participants did not exhibit changes in any speech production variable between the single- and dual-task conditions. Conclusions Overall, there were little to no changes in speech production when a low-demand oscillatory motor task was performed with concurrent reading. For the extemporaneous task, however, individuals with PD exhibited significant changes when the speech and manual tasks were performed concurrently, a pattern that was not observed for control speakers. Supplemental Material https://doi.org/10.23641/asha.8637008


2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 287-287
Author(s):  
Deepan Guharajan ◽  
Roee Holtzer

Abstract Aging populations are at increased risk to experience mobility disability, which is associated with falls, frailty, and mortality. Previous studies have not examined the concurrent associations of both positive and negative affect with gait velocity. We examined whether individual differences in positive and negative affect predicted dual-task performance decrements in velocity in a dual-task (DT) paradigm in non-demented older adults. We hypothesize that positive affect would be associated with lower DT costs, and negative affect would be associated with higher DT costs. Participants (N = 403; mean age, = 76.22 (6.55); females = 56%) completed the Positive and Negative Affect Schedule (PANAS) and a DT paradigm that involved three task conditions: Single-Task-Walk (STW), Alpha (cognitive interference requiring participants to recite alternate letters of the alphabet), and Dual-Task-Walk (DTW) requiring participant to perform the two single tasks concurrently. Gait velocity was assessed via an instrumented walkway. As expected, results of a linear mixed effects model (LME) showed a significant decline in gait velocity (cm/s) from STW to DTW (estimate = -11.79; 95%CI = -12.82 to -10.77). LME results further revealed that negative affect was associated with greater decline in gait velocity from STW to DTW (ie., worse DT cost) (estimate = -0.38; 95%CI = -0.73 to -0.03). Positive affect did not, however, predict DT costs in gait velocity (estimate = -0.09; 95%CI = -0.23 to 0.05). These findings suggest that increased negative affect interferes with the allocation of attentional resources to competing task demands inherent in the DT paradigm.


2019 ◽  
Vol 30 (4) ◽  
pp. 2542-2554 ◽  
Author(s):  
Maryam Ghaleh ◽  
Elizabeth H Lacey ◽  
Mackenzie E Fama ◽  
Zainab Anbari ◽  
Andrew T DeMarco ◽  
...  

Abstract Two maintenance mechanisms with separate neural systems have been suggested for verbal working memory: articulatory-rehearsal and non-articulatory maintenance. Although lesion data would be key to understanding the essential neural substrates of these systems, there is little evidence from lesion studies that the two proposed mechanisms crucially rely on different neuroanatomical substrates. We examined 39 healthy adults and 71 individuals with chronic left-hemisphere stroke to determine if verbal working memory tasks with varying demands would rely on dissociable brain structures. Multivariate lesion–symptom mapping was used to identify the brain regions involved in each task, controlling for spatial working memory scores. Maintenance of verbal information relied on distinct brain regions depending on task demands: sensorimotor cortex under higher demands and superior temporal gyrus (STG) under lower demands. Inferior parietal cortex and posterior STG were involved under both low and high demands. These results suggest that maintenance of auditory information preferentially relies on auditory-phonological storage in the STG via a nonarticulatory maintenance when demands are low. Under higher demands, sensorimotor regions are crucial for the articulatory rehearsal process, which reduces the reliance on STG for maintenance. Lesions to either of these regions impair maintenance of verbal information preferentially under the appropriate task conditions.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 228
Author(s):  
Sze-Ying Lam ◽  
Alexandre Zénon

Previous investigations concluded that the human brain’s information processing rate remains fundamentally constant, irrespective of task demands. However, their conclusion rested in analyses of simple discrete-choice tasks. The present contribution recasts the question of human information rate within the context of visuomotor tasks, which provides a more ecologically relevant arena, albeit a more complex one. We argue that, while predictable aspects of inputs can be encoded virtually free of charge, real-time information transfer should be identified with the processing of surprises. We formalise this intuition by deriving from first principles a decomposition of the total information shared by inputs and outputs into a feedforward, predictive component and a feedback, error-correcting component. We find that the information measured by the feedback component, a proxy for the brain’s information processing rate, scales with the difficulty of the task at hand, in agreement with cost-benefit models of cognitive effort.


Ergonomics ◽  
1979 ◽  
Vol 22 (5) ◽  
pp. 549-555 ◽  
Author(s):  
SARAH A. NUNNELEY ◽  
PATRICK J. DOWD ◽  
LOREN G. MYHRE ◽  
RICHARD F. STRIBLEY ◽  
RICHARD C. MCNEE

Sign in / Sign up

Export Citation Format

Share Document