Evaluation of Mining Activities Using a Scenario Interview Approach

Author(s):  
Fred Turin ◽  
Lisa Steiner ◽  
Kim Cornelius

NIOSH researchers have been examining underground coal mining activities in order to evaluate work crew hazards. In 1994 a continuous mining machine operator was killed by falling roof during extended cut mining. Many aspects of the incident were used by NIOSH researchers to develop a scenario interview. The goal was to provide a realistic framework for acquiring frank and detailed insights. The interview consists of two sections. The first describes the underground mining conditions. The second recounts the fatal incident. Each section is supplemented by a diagram and a set of questions addressing relevant safety issues. The interview was administered at three mines that actively take extended cuts. Researchers found the scenario approach to be an effective interview tool as well as an effective hazard awareness and safe work practices training platform.

2014 ◽  
Vol 1073-1076 ◽  
pp. 1907-1910
Author(s):  
Yao Bin Sheng ◽  
Yan Shen ◽  
Shu Lin Xu

This papers deals with the study of environmental impact assessment of underground coal mining activities. InSAR technique was utilized in this paper to monitor the mine subsidence caused by underground mine extractions. The study area is in Chongqing municipality in west of China, and the studied coal mine has been founded for more than 80 years. Two ALOS PALSAR images were used in this study; the time interval of two image acquisition time is approximately two years and one month. The underground mining-induced subsidence could be easily identified from the unwrapped interferogram, and the maximum subsidence value was around 32.8 centimeters.


2021 ◽  
Vol 4 (1) ◽  
pp. 343-354
Author(s):  
Krzysztof Krauze ◽  
Kamil Mucha ◽  
Tomasz Wydro ◽  
Andrzej Kutnik ◽  
Waldemar Hałas ◽  
...  

Abstract The roof support, especially the ŁP yielding steel arch support, is transported and assembled in the face with the use of auxiliary machines. This activity in Polish underground mines causes numerous problems, which until present have not been solved. Currently, transport and assembly are carried out manually, while the roadheader and suspended rail are used only to a small extent. Therefore, the modular installation and transport assembly was developed jointly by FAMA Sp. z o. o. and AGH University of Science and Technology. The solution in question enables performing a number of functions (including transport and assembly of all kinds of support arches), which are not available in currently manufactured equipment. The proposed manipulator solves numerous problems occurring during the installation of the steel arch support in an underground mining excavation and significantly improves the process of drilling galleries. This innovative solution considerably differs from the existing ones, and its greatest advantage is versatility with regard to the cross-section and equipment of the roadway, as well as a wide range of functions. In addition, it can also be used for reloading works. The modular installation and transport assembly together with a platform, a temporary mechanized roof support and a mining machine, make up a mechanizes roadheader complex, which enables continuous mining, loading and installing the permanent support in underground workings.


Author(s):  
Adam K. Smith ◽  
David S. Yantek ◽  
J. Shawn Peterson

Occupational noise-induced hearing loss continues to be one of the most pervasive health problems in the mining industry, despite over 25 years of regulation. One of the loudest pieces of equipment used in underground mining is the continuous mining machine. Noise sample data collected by the Mine Safety and Health Administration indicate that 42% of noise overexposures between 2000 and 2005 involved continuous mining machine operators. Previously conducted field and laboratory tests have determined that the continuous mining machine conveyor system is a dominant noise source. Loud impacts occur as the conveyor chain flight bars, used to move the mined aggregate, traverse their path from the top to the underside of the conveyor deck. Various noise control treatments have been applied to abate noise caused by the conveyor system. A durable polyurethane coating has been developed for the conveyor flight bars, resulting in a time-weighted average reduction of 3 dB(A) for an eight-hour work shift. In an attempt to further reduce continuous mining machine operator overexposures, a similar urethane coating has been applied to the tail roller component of the conveyor system. Laboratory results showed a 2 dB(A) reduction in sound power levels, but the component failed during underground durability testing. An outer steel sleeve has been added to the urethane coating of the tail roller to enhance wear resistance during mining. The urethane jacketed tail roller is the latest effort, combined with previous noise treatments, to bring the continuous mining machine into compliance with federal noise regulations.


Author(s):  
Hugo E. Camargo ◽  
Adam K. Smith ◽  
Peter G. Kovalchik ◽  
Rudy J. Matetic

Noise Induced Hearing Loss is the most common occupational disease in the U.S. and of paramount importance in the mining industry. According to data for 2006 from the Mine Safety and Health Administration (MSHA), Continuous Miner operators accounted for 30.2% of underground mining equipment operators with noise doses exceeding the Permissible Exposure Limit (PEL). This figure becomes more significant considering that 49% of the 2006 national underground coal production was extracted using continuous mining methods. Thus, there is a clear need to reduce the sound radiated by Continuous Mining Machines. The first step towards efficient noise control of a Continuous Mining Machine requires identification of the various noise sources under controlled operating conditions. To this end, a 42-microphone phased array was used in conjunction with 4 reference microphones to sample the acoustic field of a machine in the Hemi-anechoic chamber of the Pittsburgh Research Laboratory. These data were processed using a frequency-domain beamforming algorithm to obtain acoustic maps of 5 sides of the machine. The focus of the test was on the conveyor noise since previous studies showed that operation of the conveyor is the most important contributor to the sound radiated by the machine. From the acoustic maps, the following potential areas for noise control were identified, and included: chain-tail-roller interaction, chain flight tip-side board interaction, and chain-upper deck interaction.


1981 ◽  
Vol 103 (3) ◽  
pp. 257-269 ◽  
Author(s):  
R. S. Becker ◽  
G. R. Anderson ◽  
J. Kovac

The results of a laboratory investigation of coal cutting mechanics and noise are presented. These experiments were performed using a linear cutting apparatus that operates over a broad cutting speed range. The influence of several coal cutting parameters on the noise, force, productivity, and specific energy associated with linear cuts was ascertained. Some basic theoretical aspects of coal cutting mechanics and noise generation are discussed, and the results of the laboratory experiments are used to formulate analytical models of the coal cutting forces and noise. The analytical model for coal cutting noise is then generalized to account for the more important effects of rotary cutting. Based on the generalized model, an estimate of the sound pressure level at an operator’s position is made for a typical continuous mining machine. It is concluded that by employing linear rather than rotary cuts, using deeper depths of cut, slower cutting speeds, and more efficient cutting tools, it is possible to reduce the level of coal cutting noise, as well as provide benefits to other important areas of health and safety in underground mining.


2014 ◽  
Vol 59 (4) ◽  
pp. 971-986 ◽  
Author(s):  
Krzysztof Tajduś

Abstract The paper presents the analysis of the phenomenon of horizontal displacement of surface induced by underground mining exploitation. In the initial part, the basic theories describing horizontal displacement are discussed, followed by three illustrative examples of underground exploitation in varied mining conditions. It is argued that center of gravity (COG) method presented in the paper, hypothesis of Awierszyn and model studies carried out in Strata Mechanics Research Institute of the Polish Academy of Sciences indicate the proportionality between vectors of horizontal displacement and the vector of surface slope. The differences practically relate to the value of proportionality coefficient B, whose estimated values in currently realized design projects for mining industry range between 0.23r to 0.42r for deep exploitations, whereas in the present article the values of 0.33r and 0.47r were obtained for two instances of shallow exploitation. Furthermore, observations on changes of horizontal displacement vectors with face advancement indicated the possibility of existence of COG zones above the mined-out field, which proved the conclusions of hitherto carried out research studies (Tajduś 2013).


Author(s):  
John R. Bartels ◽  
Dean H. Ambrose ◽  
Sean Gallagher

Remote operation of continuous miners has enhanced the health and safety of underground miners in many respects; however, numerous fatal and non-fatal continuous miner struck-by accidents have occurred when using remote controls. In an effort to prevent these injuries, NIOSH researchers at Pittsburgh Research Laboratory examined the workplace relationships between continuous miner operators and various tramming modes of the equipment using motion captured data, predicted operator response times, and field- of- view data to determine causes of operator-machine struck-by events in a virtual mine environment. Factors studied included machine speed, direction of escape, operator facing orientation relative to the machine, work posture, distance from machine, and operator anthropometry. Close proximity to the machine, high machine tramming speeds, a right-facing orientation and operator positioning near the tail all resulted in high risk of being struck. It is hoped that this data will provide an improved rationale for operator positioning for remotely operated continuous miners.


2012 ◽  
Vol 190-191 ◽  
pp. 1179-1182
Author(s):  
Xiu Zhi Meng ◽  
Zeng Zhi Zhang ◽  
Zong Sheng Wang

The mining boundary ultra-layer & cross-border of some small coal mines in the profit-driven results in a many of safety accidents, waste of resources and environmental damage while the state can not achieve the full uninterrupted supervision because of the backward monitoring tools and equipment. In this situation the real-time monitoring system for underground mining activities is designed based on explosion source location technology. Small and medium-sized coal mines tunnel by blasting operations. The P waves are picked up by acceleration vibration sensors buried underground that are identified and dealt by using wavelet transform. The bursting point is located by the Geiger algorithm and displayed in the mine’s electronic map. The monitor system has good stability, small positioning error by field-proven.


Sign in / Sign up

Export Citation Format

Share Document