Apoptosis in Human Oral Squamous Cell Carcinomas is Induced by 15-Deoxy-Δ12,14-Prostaglandin J2 but not by Troglitazone

2003 ◽  
Vol 82 (10) ◽  
pp. 802-806 ◽  
Author(s):  
K. Fukuchi ◽  
M. Date ◽  
Y. Azuma ◽  
M. Shinohara ◽  
H. Takahashi ◽  
...  

15-deoxy-Δ12,14-prostaglandin J2 (15-d-PGJ2) and troglitazone have been shown to induce apoptosis in several carcinoma cell lines. However, apoptotic signaling pathways of these agents are poorly understood. We tested the hypothesis that peroxisome proliferator-activated receptor-γ ligands such as these two agents will induce caspase-mediated apoptosis in human oral squamous cell carcinomas (SCC). Treatment of these cell lines with 15-d-PGJ2 or troglitazone decreased cell viability in a time- and dose-dependent manner. 15-d-PGJ2, but not troglitazone, induced apoptosis, and this effect was time-dependent. Exposure of cells to 20 μM of 15-d-PGJ2 initiated early cytochrome c release, followed by late caspase activation. Furthermore, co-treatment with caspase inhibitors such as Z-VAD-FMK or Z-DEVD-FMK of oral SCC cells that had been treated with 20 μM of 15-d-PGJ2 blocked apoptosis. Our study demonstrates that treatment with 15-d-PGJ2, but not troglitazone, induces apoptosis in human SCC cell lines, and 15-d-PGJ2 appears to work through cytochrome c release and caspase activation.

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 652 ◽  
Author(s):  
Ju-Sik Park ◽  
John O. Holloszy ◽  
Kijin Kim ◽  
Jin-Ho Koh

This study aimed to investigate the long-term effects of training intervention and resting on protein expression and stability of peroxisome proliferator-activated receptor β/δ (PPARβ), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), glucose transporter type 4 (GLUT4), and mitochondrial proteins, and determine whether glucose homeostasis can be regulated through stable expression of these proteins after training. Rats swam daily for 3, 6, 9, 14, or 28 days, and then allowed to rest for 5 days post-training. Protein and mRNA levels were measured in the skeletal muscles of these rats. PPARβ was overexpressed and knocked down in myotubes in the skeletal muscle to investigate the effects of swimming training on various signaling cascades of PGC-1α transcription, insulin signaling, and glucose uptake. Exercise training (Ext) upregulated PPARβ, PGC-1α, GLUT4, and mitochondrial enzymes, including NADH-ubiquinone oxidoreductase (NUO), cytochrome c oxidase subunit I (COX1), citrate synthase (CS), and cytochrome c (Cyto C) in a time-dependent manner and promoted the protein stability of PPARβ, PGC-1α, GLUT4, NUO, CS, and Cyto C, such that they were significantly upregulated 5 days after training cessation. PPARβ overexpression increased the PGC-1α protein levels post-translation and improved insulin-induced signaling responsiveness and glucose uptake. The present results indicate that Ext promotes the protein stability of key mitochondria enzymes GLUT4, PGC-1α, and PPARβ even after Ext cessation.


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 655-663 ◽  
Author(s):  
Joya Chandra ◽  
Emma Mansson ◽  
Vladimir Gogvadze ◽  
Scott H. Kaufmann ◽  
Freidoun Albertioni ◽  
...  

Abstract The purine nucleoside 2-chlorodeoxyadenosine (CdA) is often used in leukemia therapy. Its efficacy, however, is compromised by the emergence of resistant cells. In the present study, 3 CdA-resistant cell lines were generated and characterized. Their ability to accumulate 2-chloroadenosine triphosphate (CdATP) varied, reflecting differences in activities of deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Nonetheless, the selected lines were uniformly resistant to CdA-induced apoptosis, as assessed by caspase activation and DNA fragmentation. In contrast, cytosols from resistant cells were capable of robust caspase activation when incubated in the presence of cytochrome c and dATP. Moreover, replacement of dATP with CdATP also resulted in caspase activation in the parental and some of the resistant cell lines. Strikingly, CdA-induced decreases in mitochondrial transmembrane potential and release of cytochrome c from mitochondria were observed in the parental cells but not in any resistant lines. The lack of cytochrome c release correlated with an increased ability of mitochondria from resistant cells to sequester free Ca2+. Consistent with this enhanced Ca2+buffering capacity, an early increase in cytosolic Ca2+after CdA treatment of parental cells but not resistant cells was detected. Furthermore, CdA-resistant cells were selectively cross-resistant to thapsigargin but not to staurosporine- or Fas-induced apoptosis. In addition, CdA-induced caspase-3 activation and DNA fragmentation were inhibited by the Ca2+ chelator BAPTA-AM in sensitive cells. Taken together, the data indicate that the mechanism of resistance to CdA may be dictated by changes in Ca2+-sensitive mitochondrial events.


Drug Research ◽  
2020 ◽  
Vol 70 (02/03) ◽  
pp. 112-118 ◽  
Author(s):  
Enaytollah Seydi ◽  
Tina Servati ◽  
Fatemeh Samiei ◽  
Parvaneh Naserzadeh ◽  
Jalal Pourahmad

AbstractPioglitazone (PG) is one of the thiazolidinedione (TZDs) drugs used in diabetic patients. TZDs are known as peroxisome proliferator-activated receptor gamma (PPARγ) agonists. Mitochondria are considered as one of the targets of these drugs. The mechanisms of the effect of PG on mitochondria are not well understood. In this study, we investigated the effect of PG on mitochondria isolated from brain and heart. Mitochondrial parameters such as succinate dehydrogenase (SDH) activity, reactive oxygen species (ROS) generation, collapse in mitochondrial membrane potential (MMP), mitochondrial swelling and cytochrome c release were evaluated. The results showed that PG at concentrations of 12.5, 25 and 50 µg/ml increased the generation of ROS, the collapse of MMP, mitochondrial swelling and the release of cytochrome c in mitochondria isolated from both brain and heart tissues. The underlying mechanisms of PG induced neuro-toxicity and cardio-toxicity may be associated with changes in mitochondrial function, ROS generation (oxidative stress), and changes in the mitochondrial membrane.


2001 ◽  
Vol 281 (4) ◽  
pp. G1115-G1123 ◽  
Author(s):  
Junpei Soeda ◽  
Shinichi Miyagawa ◽  
Kenji Sano ◽  
Junya Masumoto ◽  
Shun'Ichiro Taniguchi ◽  
...  

Apoptosis plays an important role in liver ischemia and reperfusion (I/R) injury. However, the molecular basis of apoptosis in I/R injury is poorly understood. The aims of this study were to ascertain when and how apoptotic signal transduction occurs in I/R injury. The apoptotic pathway in rats undergoing 90 min of warm ischemia with reperfusion was compared with that of rats undergoing prolonged ischemia alone. During ischemia, mitochondrial cytochrome c was released into the cytosol in a time-dependent manner in hepatocytes and sinusoidal endothelial cells, and caspase-3 and an inhibitor of caspase-activated DNase were cleaved. However, apoptotic manifestation and DNA fragmentation were not observed. After reperfusion, nuclear condensation, cells positive for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling, and DNA fragmentation were observed and caspase-8 and Bid cleavage occurred. In contrast, prolonged ischemia alone induced necrosis rather than apoptosis. In summary, our results show that release of mitochondrial cytochrome c and caspase activation proceed during ischemia, although apoptosis is manifested after reperfusion.


1990 ◽  
Vol 45 (5) ◽  
pp. 945-951 ◽  
Author(s):  
R. P. M. A. Crooijmans ◽  
J. H. M. Schwachöfer ◽  
J. Hoogenhout ◽  
G. Merkx ◽  
L. G. Poels ◽  
...  

2008 ◽  
Vol 18 (2) ◽  
pp. 329-338 ◽  
Author(s):  
W. Wu ◽  
J. Celestino ◽  
M. R. Milam ◽  
K. M. Schmeler ◽  
R. R. Broaddus ◽  
...  

PTEN mutations have been implicated in the development of endometrial hyperplasia and subsequent cancer. Peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists have demonstrated antineoplastic and chemopreventive effects. The purpose of this study was to evaluate the effects of the PPAR-γ agonist rosiglitazone on both PTEN wild type and PTEN null cell lines and in the PTEN heterozygote(+/−) murine model. Hec-1-A (PTEN wild type) and Ishikawa (PTEN null) cells were treated with rosiglitazone. Thirty-five female PTEN+/− mice were genotyped and placed into one of four groups for treatment for 18 weeks: A) PTEN wild type with 4 mg/kg rosiglitazone, B) PTEN+/− mice with vehicle, C) PTEN+/− mice with 4 mg/kg rosiglitazone, and D) PTEN+/− mice with 8 mg/kg rosiglitazone. Proliferation and apoptosis were measured by bromodeoxyuridine (BrdU) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling of DNA fragmentation sites assay. Rosiglitazone caused cell growth inhibition in both Hec-1-A and Ishikawa in a dose-dependent manner (P< 0.02 and P< 0.03, respectively). Rosiglitazone also induced apoptosis in both Hec-1-A (P< .001) and Ishikawa (P< .001) cells in a dose-dependent manner. In the murine model, rosiglitazone decreased proliferation of the endometrial hyperplastic lesions (B vs C; 39.7% vs 9.3% and B vs D; 39.7% vs 4.2%; P< 0.0001) and increased apoptosis of glandular endometrial epithelial cells (B vs C; 2.8% vs 22.4%; P< 0.0001 and B vs D; 2.8% vs 30.2%; P= 0.003). PPAR-γ agonist rosiglitazone inhibits proliferation and induces apoptosis in both PTEN intact and PTEN null cancer cell lines and in hyperplastic endometrial lesions in the PTEN+/− murine model.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
K. Nishida ◽  
T. Kunisada ◽  
Z. N. Shen ◽  
Y. Kadota ◽  
K. Hashizume ◽  
...  

Induction of differentiation and apoptosis in cancer cells by ligands of PPAR is a novel therapeutic approach to malignant tumors. Chondrosarcoma (malignant cartilage tumor) and OUMS-27 cells (cell line established from grade III human chondrosarcoma) express PPAR. PPAR ligands inhibited cell proliferation in a dose-dependent manner, and induced apoptosis of OUMS-27. The higher-grade chondrosarcoma expressed a higher amount of antiapoptotic Bcl-xL in vivo. The treatment of OUMS-27 by 15d-PG, the most potent endogenous ligand for PPAR, downregulated expression of Bcl-xL and induced transient upregulation of proapoptotic Bax, which could accelerate cytochrome c release from mitochondria to the cytosol, followed by induction of caspase-dependent apoptosis. 15d-PG induced the expression of CDK inhibitor p21 protein in human chondrosarcoma cells, which appears to be involved in the mechanism of inhibition of cell proliferation. These findings suggest that targeted therapy with PPAR ligands could be a novel strategy against chondrosarcoma.


Sign in / Sign up

Export Citation Format

Share Document