ppar ligands
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 17)

H-INDEX

27
(FIVE YEARS 3)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Marialuigia Fantacuzzi ◽  
Rosa Amoroso ◽  
Alessandra Ammazzalorso

The manipulation of host metabolisms by viral infections has been demonstrated by several studies, with a marked influence on the synthesis and utilization of glucose, nucleotides, fatty acids, and amino acids. The ability of virus to perturb the metabolic status of the infected organism is directly linked to the outcome of the viral infection. A great deal of research in recent years has been focusing on these metabolic aspects, pointing at modifications induced by virus, and suggesting novel strategies to counteract the perturbed host metabolism. In this review, our attention is turned on PPARs, nuclear receptors controlling multiple metabolic actions, and on the effects played by PPAR ligands during viral infections. The role of PPAR agonists and antagonists during SARS-CoV-2, HCV, and HCMV infections will be analyzed.


Author(s):  
Jinu Avarachan ◽  
Anitta Augustine ◽  
Pallavi Mahadev Shinde ◽  
Venkatesh Gunasekaran

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, belonging to the nuclear receptor family, which has high expression of three structurally homologous PPARs isotypes (PPARα, PPARβ/δ, and PPARγ) in brain. Several studies have discovered role of PPARs in oxidative stress, mitochondrial dysfunction, neuroinflammation and production of the toxic proteins in various neurodegenerative disorders such as Parkinson disease, Alzheimer’s disease, Huntington disease, Amyotrophic Lateral Sclerosis, Multiple sclerosis etc. Currently available drugs provide symptomatic relief, but disease progression cannot be stopped, because of their unclear molecular approach. The ability of PPAR to modulate the pathways involved in these conditions paved a path for future studies. Due to increasing challenges to treat central nervous system related disorders, hence PPARs have attracted much attention nowadays. In this review, we discussed various mechanisms of PPARs subtypes in neurodegenerative disorders. We congregate the molecular evidences which support PPARs as a therapeutic target to treat neurodegenerative disorders from preclinical and clinical studies and provide a basis for the potential therapeutic use of PPAR ligands in human diseases.


2021 ◽  
Vol 22 (1) ◽  
pp. 433
Author(s):  
Lin Peng ◽  
Huixia Yang ◽  
Yao Ye ◽  
Zhi Ma ◽  
Christina Kuhn ◽  
...  

Peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) belong to the transcription factor family, and they are highly expressed in all types of trophoblast during pregnancy. The present review discusses currently published papers that are related to the regulation of PPARs via lipid metabolism, glucose metabolism, and amino acid metabolism to affect trophoblast physiological conditions, including differentiation, maturation, secretion, fusion, proliferation, migration, and invasion. Recent pieces of evidence have proven that the dysfunctions of PPARs in trophoblast lead to several related pregnancy diseases such as recurrent miscarriage, preeclampsia, intrauterine growth restriction, and gestational diabetes mellitus. Moreover, the underlying mechanisms of PPARs in the control of these processes have been discussed as well. Finally, this review’s purposes are to provide more knowledge about the role of PPARs in normal and disturbed pregnancy with trophoblast, so as to find PPAR ligands as a potential therapeutic target in the treatment and prevention of adverse pregnancy outcomes.


2020 ◽  
Vol 21 (24) ◽  
pp. 9577
Author(s):  
Dmitry V. Chistyakov ◽  
Alina A. Astakhova ◽  
Sergei V. Goriainov ◽  
Marina G. Sergeeva

Neuroinflammation is a key process of many neurodegenerative diseases and other brain disturbances, and astrocytes play an essential role in neuroinflammation. Therefore, the regulation of astrocyte responses for inflammatory stimuli, using small molecules, is a potential therapeutic strategy. We investigated the potency of peroxisome proliferator-activated receptor (PPAR) ligands to modulate the stimulating effect of lipopolysaccharide (LPS) in the primary rat astrocytes on (1) polyunsaturated fatty acid (PUFAs) derivative (oxylipins) synthesis; (2) cytokines TNFα and interleukin-10 (IL-10) release; (3) p38, JNK, ERK mitogen-activated protein kinase (MAPKs) phosphorylation. Astrocytes were exposed to LPS alone or in combination with the PPAR ligands: PPARα (fenofibrate, GW6471); PPARβ (GW501516, GSK0660); PPARγ (rosiglitazone, GW9662). We detected 28 oxylipins with mass spectrometry (UPLC-MS/MS), classified according to their metabolic pathways: cyclooxygenase (COX), cytochrome P450 monooxygenases (CYP), lipoxygenase (LOX) and PUFAs: arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA). All tested PPAR ligands decrease COX-derived oxylipins; both PPARβ ligands possessed the strongest effect. The PPARβ agonist, GW501516 is a strong inducer of pro-resolution substances, derivatives of DHA: 4-HDoHE, 11-HDoHE, 17-HDoHE. All tested PPAR ligands decreased the release of the proinflammatory cytokine, TNFα. The PPARβ agonist GW501516 and the PPARγ agonist, rosiglitazone induced the IL-10 release of the anti-inflammatory cytokine, IL-10; the cytokine index, (IL-10/TNFα) was more for GW501516. The PPARβ ligands, GW501516 and GSK0660, are also the strongest inhibitors of LPS-induced phosphorylation of p38, JNK, ERK MAPKs. Overall, our data revealed that the PPARβ ligands are a potential pro-resolution and anti-inflammatory drug for targeting glia-mediated neuroinflammation.


2020 ◽  
Vol 21 (19) ◽  
pp. 7026
Author(s):  
Leonardo Brunetti ◽  
Antonio Carrieri ◽  
Luca Piemontese ◽  
Paolo Tortorella ◽  
Fulvio Loiodice ◽  
...  

In recent years, Peroxisome Proliferator-Activated Receptors (PPARs) have been connected to the endocannabinoid system. These nuclear receptors indeed mediate the effects of anandamide and similar substances such as oleoyl-ethanolamide and palmitoyl-ethanolamide. An increasing body of literature describing the interactions between the endocannabinoid system and PPARs has slowly but surely been accumulating over the past decade, and a multitarget approach involving these receptors and endocannabinoid degrading enzyme FAAH has been proposed for the treatment of inflammatory states, cancer, and Alzheimer’s disease. The lack of knowledge about compounds endowed with such an activity profile therefore led us to investigate a library of readily available, well-characterized PPAR agonists that we had synthesized over the years in order to find a plausible lead compound for further development. Moreover, we propose a rationalization of our results via a docking study, which sheds some light on the binding mode of these PPAR agonists to FAAH and opens the way for further research in this field.


2020 ◽  
Vol 21 (16) ◽  
pp. 5723 ◽  
Author(s):  
Nicole Wagner ◽  
Kay-Dietrich Wagner

Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes: PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands have been proposed as potential therapies for a variety of diseases such as metabolic syndrome, cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies. In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process that plays important roles in numerous pathological conditions for which therapeutic use of PPAR modulation has been suggested.


2020 ◽  
Vol 27 ◽  
Author(s):  
Suvadeep Mal ◽  
Ashish Ranjan Dwivedi ◽  
Vijay Kumar ◽  
Naveen Kumar ◽  
Bhupinder Kumar ◽  
...  

: Peroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPARα), PPAR beta (PPARβ), and PPAR gamma (PPARγ). These are multi-functional transcription factor and help in regulating inflammation, diabetes type 2, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPARγ causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPARγ is mainly involved in fatty acid storage, glucose metabolism, and homeostasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPARγ and modulate its activity. Ligands such as thiazolidinedione, troglitazone, rosiglitazone, pioglitazone effectively bind to PPARγ however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPARγ in various disease states. In addition, recently reported PPARγ ligands and pan PPAR ligands were discussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1196 ◽  
Author(s):  
Justin Matheson ◽  
Bernard Le Foll

Targeting peroxisome proliferator-activated receptors (PPARs) has received increasing interest as a potential strategy to treat substance use disorders due to the localization of PPARs in addiction-related brain regions and the ability of PPAR ligands to modulate dopamine neurotransmission. Robust evidence from animal models suggests that agonists at both the PPAR-α and PPAR-γ isoforms can reduce both positive and negative reinforcing properties of ethanol, nicotine, opioids, and possibly psychostimulants. A reduction in the voluntary consumption of ethanol following treatment with PPAR agonists seems to be the most consistent finding. However, the human evidence is limited in scope and has so far been less promising. There have been no published human trials of PPAR agonists for treatment of alcohol use disorder, despite the compelling preclinical evidence. Two trials of PPAR-α agonists as potential smoking cessation drugs found no effect on nicotine-related outcomes. The PPAR-γ agonist pioglitazone showed some promise in reducing heroin, nicotine, and cocaine craving in two human laboratory studies and one pilot trial, yet other outcomes were unaffected. Potential explanations for the discordance between the animal and human evidence, such as the potency and selectivity of PPAR ligands and sex-related variability in PPAR physiology, are discussed.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1096 ◽  
Author(s):  
Matthew L. Edin ◽  
Fred B. Lih ◽  
Bruce D. Hammock ◽  
Scott Thomson ◽  
Darryl C. Zeldin ◽  
...  

A number of oxylipins have been described as endogenous PPAR ligands. The very short biological half-lives of oxylipins suggest roles as autocrine or paracrine signaling molecules. While coronary arterial atherosclerosis is the root of myocardial infarction, aortic atherosclerotic plaque formation is a common readout of in vivo atherosclerosis studies in mice. Improved understanding of the compartmentalized sources of oxylipin PPAR ligands will increase our knowledge of the roles of PPAR signaling in diverse vascular tissues. Here, we performed a targeted lipidomic analysis of ex vivo-generated oxylipins from porcine aorta, coronary artery, pulmonary artery and perivascular adipose. Cyclooxygenase (COX)-derived prostanoids were the most abundant detectable oxylipin from all tissues. By contrast, the coronary artery produced significantly higher levels of oxylipins from CYP450 pathways than other tissues. The TLR4 ligand LPS induced prostanoid formation in all vascular tissue tested. The 11-HETE, 15-HETE, and 9-HODE were also induced by LPS from the aorta and pulmonary artery but not coronary artery. Epoxy fatty acid (EpFA) formation was largely unaffected by LPS. The pig CYP2J homologue CYP2J34 was expressed in porcine vascular tissue and primary coronary artery smooth muscle cells (pCASMCs) in culture. Treatment of pCASMCs with LPS induced a robust profile of pro-inflammatory target genes: TNFα, ICAM-1, VCAM-1, MCP-1 and CD40L. The soluble epoxide hydrolase inhibitor TPPU, which prevents the breakdown of endogenous CYP-derived EpFAs, significantly suppressed LPS-induced inflammatory target genes. In conclusion, PPAR-activating oxylipins are produced and regulated in a vascular site-specific manner. The CYP450 pathway is highly active in the coronary artery and capable of providing anti-inflammatory oxylipins that prevent processes of inflammatory vascular disease progression.


2020 ◽  
Vol 220 ◽  
pp. 32-37
Author(s):  
Saman Bahrambeigi ◽  
Morteza Molaparast ◽  
Farahnaz Sohrabi ◽  
Lachin Seifi ◽  
Alireza Faraji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document