Influence of Resin Monomers on Growth of Oral Streptococci

2004 ◽  
Vol 83 (4) ◽  
pp. 302-306 ◽  
Author(s):  
Y. Takahashi ◽  
S. Imazato ◽  
R.R.B. Russell ◽  
Y. Noiri ◽  
S. Ebisu

Ethyleneglycol dimethacrylate monomers have been previously reported to stimulate the growth of certain caries-associated bacteria on the basis of turbidity measurements. To elucidate the detail of this effect, we examined the influence of resin monomers on the growth of Streptococcus sobrinus and Streptococcus sanguis by determination of bacterial numbers (colony-forming units), morphological observation, and chemical analysis. Although the absorbance values in the stationary phase of bacterial suspension were increased in the presence of ethyleneglycol monomers, no significant differences were observed for bacterial numbers throughout the incubation period. Scanning electron microscopy observation revealed the formation of sparse vesicular material surrounding bacterial cells when incubated with ethyleneglycol monomers, and these products were proved to be resin polymers. The results demonstrate that the apparent biomass increase during incubation with ethyleneglycol monomers is due not to promotion of bacterial multiplication, but to the polymerization of resin monomers to form vesicular structures attached to cells.

Author(s):  
Eun Jeong Kim ◽  
Si Young Lee

Background and Objectives: It has been reported that hemin binding proteins are involved in the mechanism of obtaining iron in some bacteria. Oral streptococci in the dental plaque are assumed to acquire iron through hemin or hemin compounds. The aim of this study was to identify the presence of a protein (hemin binding protein) involved in the hemin binding mechanism of oral streptococci. Methodology: In this study, we investigated the presence of proteins involved in hemin binding of oral streptococci through sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis using hemin-agarose beads. Results: As a result of SDS-PAGE analysis, similar or different sizes of hemin binding protein bands were observed depending on the strains belonging to streptococci. The molecular weight of hemin binding protein in Streptococcus gordonii, Streptococcus rattus, Streptococcus sobrinus, Streptococcus sanguis and Streptococcus oralis were approximately 95 kDa, 43 kDa, 43 kDa, 39 kDa, and 39 kDa, respectively. Conclusion: In this study, the presence of hemin binding protein in streptococci was confirmed and the proteins involved in hemin binding in different species of oral streptococci may be different.


2017 ◽  
Vol 68 (11) ◽  
pp. 2691-2693
Author(s):  
Krisztina Martha ◽  
Cristina Bica ◽  
Edva Anna Frunda

By the end of the 60�s, the theory that refined carbohydrates promotes the absorption of saccharolytic Gram-positive microbial species on the tooth surfaces has become generally. Mutans streptococci (Streptococcus mutans and Streptococcus sobrinus) were key players in this theory. On agar plates, Str. mutans produces small, circular colonies, in the presence of glucose, and in the presence of sucrose large, sticky, gelatinous colonies. This gelatinous texture is due to the shell material: mutant 1 � 3 glucose polymers and dextran 1 �! 6 glucose polymers. Str. mutans are able to survive in the oral cavity with a pH lower than 5.5. That is why consecutive multiple sugar intake promotes the colonization of Str. mutans, which results in dental caries in stagnant zones. As oral pH is continuously shifted to acid, more acid-resistant bacteria appear. Our aim was to identify species in infant-mother pair gingival crevicular bacterial flora, which can be detected on high-sucrose culture media and to underline the jeopardy of vertical oral contamination from mother to infant.


2018 ◽  
Vol 53 ◽  
pp. 04016
Author(s):  
Juan Ma ◽  
Fang-yan Chen ◽  
Yu-bin Tang ◽  
Xin-gang Wang

Aiming at effectively controlling nonylphenol (NP) pollution, three bacterial strains were isolated from activated sludge and landfill leachate, which could grow with nonylphenol as sole carbon and energy source. The three nonylphenol-degrading bacteria isolated were named as WN6, SLY9 and SLY10, respectively. The morphological observation and 16S rDNA identification revealed that the strains belonged to Serratia sp., Klebsiella sp. and Pseudomonas putida, respectively. WN6 and SLY9 contained ALK gene, while WN6 and SLY10 harbored C12O genes. The three strains were combined together to form complex microorganisms ZJF. The ratio of Serratia sp. to Klebsiella sp. to Pseudomonas putida was 2:1:2 (volume ratio of bacterial suspension). Under the conditions that temperature was 30 ℃, pH was 6, inoculation amount was 10% (volume ratio), initial concentration of NP solutions was 20 mg/L, NP degradation rate by ZJF reached 73.82%, compared with any single strain of the three bacteria, NP degradation rate by ZJF increased more than 15% during 6 days. Bioremediation of nonylphenol-polluted the Yangtze River and the Ancient Canal water by ZJF ware simulated. After a 6-day incubation period, the degrading rate of nonylphenol in Ancient Canal water was close to 80%, and the degrading rate of nonylphenol in Yangtze River water was 72.84%.


2017 ◽  
Vol 262 ◽  
pp. 224-227
Author(s):  
Gen Murakami ◽  
Yuichi Sugai ◽  
Kyuro Sasaki

In-situ realtime method that can monitor the target bacteria should be used to determine the real situation of the bacteria in deep parts of heaps in heap bioleaching plants. This study suggest to apply flow cytometry technology to in-situ realtime monitoring of target bacteria. Flow cytometry is a method that can rapidly quantify the bacterial cells in bacterial suspension based on the detection of lights that are emitted from bacterial cells. In this study, we estimated the possibility of the application of flow cytometry to the selective detection of target bacteria. The bacterial culture solution that had been diluted by water including other bacteria was provided for fluorescence spectral analysis and scattered light analysis that were functions of flow cytometry. Our target bacteria could be selectively detected by those analyses in this study, therefore, it was shown that the flow cytometry could be useful for detecting target bacteria selectively. Because the measurement principle of flow cytometry is quite simple, it can be expected to be installed into deep heaps through the monitoring wells and determine the dominance of target bacteria in-situ and realtime in the future.


1986 ◽  
Vol 234 (1) ◽  
pp. 43-48 ◽  
Author(s):  
E J Bergey ◽  
M J Levine ◽  
M S Reddy ◽  
S D Bradway ◽  
I Al-Hashimi

The present study has utilized the iodinatable cross-linking agent N-hydroxysuccinimidyl-4-azidosalicylic acid (ASA) to examine the specific interaction between the proline-rich glycoprotein (PRG) of human parotid saliva and Streptococcus sanguis G9B. The binding of 125I-ASA-PRG to Streptococcus sanguis G9B displayed saturation kinetics, reversibility and was inhibited by unlabelled PRG. Inhibition studies with other glycoproteins and saccharides indicated that binding was mediated by a bacterial adhesin with specificity towards N-acetylneuraminic acid, galactose, and N-acetylgalactosamine. After cross-linking, the 125I-ASA-PRG-adhesin complex could be extracted with SDS and separated from uncoupled 125I-ASA-PRG by gel filtration on Sepharose CL-6B. Approx. 1% of the 125I-ASA-PRG was cross-linked to the bacterial surface. Examination of the 125I-ASA-PRG-adhesin complex by SDS/polyacrylamide-gel electrophoresis/fluorography on 5% -(w/v)-polyacrylamide gels revealed that PRG was bound to two bacterial components. These findings support our previous suggestion that human salivary glycoproteins can specifically interact with oral streptococci and that these interactions occur between the glycoprotein's carbohydrate units and lectin(s) on the bacterial cell surface.


1984 ◽  
Vol 47 (3) ◽  
pp. 177-181 ◽  
Author(s):  
T. G. REHBERGER ◽  
L. A. WILSON ◽  
B. A. GLATZ

A study was done to investigate the microbiological quality of commercial tofu available in local retail outlets. A sampling method was first developed to obtain accurate and representative microbial counts of individual pieces of tofu. Plate count determination of total aerobic organisms, psychrotrophs, coliforms, sporeformers, yeasts and molds, and staphylococci were made on 60 tofu samples (representing three lots each of four different brands) obtained within 24 h after delivery to the retail store. In addition, for two brands that provided manufacturer's pull dates, the same microbial counts were obtained for samples stored in the laboratory at 10°C until the pull date. Of the tofu sampled immediately after purchase, 83% of the lots tested had total counts greater than 106 colony-forming units (CFU)/g and psychrotrophic counts greater than 104 CFU/g. In addition, 67% of the lots tested had confirmed coliform counts greater than 103 CFU/g. Very low levels (less than 10 CFU/g) of all other microbial groups tested for were found in the majority of lots. Samples held until the manufacturer's pull date contained higher total and psychrotrophic counts but lower or stable counts of other organisms compared with samples tested immediately after purchase. To improve the microbiological quality of tofu, processors need to reduce initial loads by improving sanitation and processing techniques, and retailers should provide more consistent and colder refrigerated storage.


2009 ◽  
Vol 11 (1) ◽  
pp. 79-83 ◽  
Author(s):  
C.M. Carvalho ◽  
M.R. Macedo-Costa ◽  
M.S.V. Pereira ◽  
J.S. Higino ◽  
L.F.P.C. Carvalho ◽  
...  

Este estudo avaliou a ação do extrato etanólico das folhas de Myrciaria cauliflora (Mart.)O.Berg. sobre três culturas de Streptococcus formadoras do biofilme dental. A atividade antimicrobiana foi determinada pelo método de difusão em meio sólido. Os dados obtidos foram satisfatórios para todas as espécies ensaiadas (Streptococcus mutans ATCC 25175, Streptococcus sobrinus ATCC 27609 e Streptococcus sanguis ATCC 10557) gerando halos de inibição quando utilizado o extrato puro e diluições 1:2 e 1:4. Os resultados incentivam a realização de novas pesquisas que viabilizem a produção de compostos com finalidade terapêutica que possam ser utilizados clinicamente na odontologia.


2015 ◽  
Vol 16 (4) ◽  
pp. 291-298 ◽  
Author(s):  
Roghayeh Ghorbanzadeh ◽  
Babak Pourakbari

ABSTRACT Aim Polymethyl-methacrylate (PMMA) is commonly used primarily for baseplates of orthodontic appliances (BOA). The activities of cariogenic bacteria in biofilm on these surfaces may contribute to dental caries, gingival inflammation and periodontal disease. The PMMA incorporated with nanoparticles of silver (NanoAg-I-PMMA) and NanoAg in situ in PMMA (NanoAg-IS-PMMA) have been shown to control the growth of cariogenic bacteria, but clinical trial of anti-cariogenic application of these novel materials in orthodontics has not been evaluated. The main aim of the study is to compare the clinical effectiveness of using NanoAg-IS-PMMA and NanoAg-I-PMMA for construction of new BOA in inhibiting the planktonic growth and biofilm formation of the cariogenic bacteria. Materials and methods Twenty four patients with a median age of 12.6 years (7-15) harboring Streptococcus mutans, Streptococcus sobrinus and Lactobacillus acidophilus as well as Lactobacillus casei participated in the randomized, doubleblind, cross-over study. The experimental BOA, NanoAg-ISBOA and NanoAg-I-BOA, contained 0.5% w/w NanoAg while the control BOA was standard PMMA. Antibacterial effect of NanoAg-IS-BOA and NanoAg-I-BOA was assessed against test cariogenic bacteria by planktonic and biofilm bacterial cells growth inhibition. Results The average levels of test cariogenic bacteria in saliva decreased about 2 to 70 fold (30.9-98.4%) compared to baseline depending on the microorganism type and test BOA. Biofilm inhibition analysis demonstrated that NanoAg-I-BOA and NanoAg-IS-BOA inhibited the biofilm of all test bacteria by 20.1 to 79.9% compared to BOA. NanoAg-IS-BOA had a strong anti-biofilm effect against S. mutans, S. sobrinus and L. casei. However, NanoAg-I-BOA showed only slight antibiofilm effects on test bacteria. Most notably, at all period of the clinical trial, NanoAg-IS-BOA showed a higher antibacterial activity than NanoAg-I-BOA. Conclusion Based on the novel data that presented here, the NanoAg-IS-BOA had strong antimicrobial activity in the planktonic phase and subsequent biofilm formation of the cariogenic bacteria. Clinical significance Wearing of NanoAg-IS-BOA has the potential to minimize dental plaque formation and caries during orthodontic treatment. How to cite this article Ghorbanzadeh R, Pourakbari B, Bahador A. Effects of Baseplates of Orthodontic Appliances with in situ generated Silver Nanoparticles on Cariogenic Bacteria: A Randomized, Double-blind Cross-over Clinical Trial. J Contemp Dent Pract 2015;16(4):291-298.


Sign in / Sign up

Export Citation Format

Share Document