scholarly journals Mechanotransducers in Rat Pulpal Afferents

2008 ◽  
Vol 87 (9) ◽  
pp. 834-838 ◽  
Author(s):  
T.O. Hermanstyne ◽  
K. Markowitz ◽  
L. Fan ◽  
M.S. Gold

The hydrodynamic theory suggests that pain associated with stimulation of a sensitive tooth ultimately involves mechanotransduction as a consequence of fluid movement within exposed dentinal tubules. To determine whether putative mechanotransducers could underlie mechanotransduction in pulpal afferents, we used a single-cell PCR approach to screen retrogradely labeled pulpal afferents. The presence of mRNA encoding BNC-1, ASIC3, TRPV4, TRPA1, the α, β, and γ subunits of ENaC, and the two pore K+ channels (TREK1, TREK2) and TRAAK were screened in pulpal neurons from rats with and without pulpal inflammation. ASIC3, TRPA1, TREK1, and TREK2 were present in ~67%, 64%, 14%, and 10% of pulpal neurons, respectively. There was no detectable influence of inflammation on the proportion of neurons expressing these mechanotransducers. Given that the majority of pulpal afferents express ASIC3 and TRPA1, our results raise the possibility that these channels may be novel targets for the treatment of dentin sensitivity.

2021 ◽  
Vol 10 (37) ◽  
pp. 3289-3293
Author(s):  
Mrinalini Mrinalini ◽  
Urvashi B. Sodvadiya ◽  
Mithra N. Hegde ◽  
Gowrish S. Bhat

BACKGROUND Dentinal hypersensitivity is a common clinical disease that occurs as a result of dentin exposure. Though the term dentin hypersensitivity and dentin sensitivity is used interchangeably, dentin hypersensitivity is an exaggerated form of dentinal sensitivity which arises due to localized pulpal inflammation, pulpal nerve sprouting, and development of inflammatory sodium channels. It is characterised by short sharp pain emerging from exposed dentinal tubules in reaction to various stimuli. Such dentin exposure could be due to either enamel loss or cemental loss. This is followed by removal of smear layer by mechanical or chemical means. At present, the hydrodynamic theory, which describes fluid movement in response to stimuli within exposed dentinal tubules, is a commonly recognized explanation for dentin hypersensitivity. It is more common in premolars and canines, and it affects the facial surfaces of the teeth towards the cervical aspect. Studies suggested microscopic changes in the structure of sensitive dentin compared with normal dentin. The diagnosis of dentinal hypersensitivity requires careful clinical examination and eliciting the response using various stimuli. Dentinal hypersensitivity is usually managed by the use of physical or chemical agents. They work either by disturbing the neural response to pain stimulus or block fluid flow by occluding the tubule. The desirable features of a desensitising agent include the ability to give instant and longlasting pain relief, being simple to use, well accepted, not harmful to the pulp. It is recommended that the desensitizing agent is used for at least two weeks. Some of the newer agents used for management includes CPP-ACP, proarginine, nanomaterials, herbal products, propolis etc. In cases where there is tooth structure loss, appropriate restorative material is used to cover the exposed dentin. Root canal therapy is considered the last resort for pain relief after all other options have failed to provide relief. The present article outlines the etiopathogenesis, risk factors, diagnosis, prevention and treatment of dentinal hypersensitivity. KEY WORDS Dentinal Hypersensitivity; Dentin Sensitivity; Desensitizing Agents; Iontophoresis


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A161-A161
Author(s):  
Diana DeLucia ◽  
Tiffany Pariva ◽  
Roland Strong ◽  
Owen Witte ◽  
John Lee

BackgroundIn advanced prostate cancer (PCa), progression to castration-resistant PCa (CRPC) is inevitable and novel therapies for CRPC are needed. Adoptive transfer of T cells targeting tumor antigens is a promising approach in the cancer field. Unfortunately, identifying antigens expressed exclusively in prostate tumor cells has been challenging. Since the prostate is not an essential organ, we alternatively selected prostate-restricted epithelial antigens (PREAs) expressed in both malignant and normal prostate tissue for transgenic T cell studies.MethodsRNA-seq data sets identifying genes enriched in PCa were cross-referenced with the NIH Genotype-Expression database to identify PREAs. Using a novel molecular immunology approach, select PREAs and major histocompatibility complex class I (MHC-I) molecules were co-expressed in HEK293F cells, from which MHC–peptide complexes were efficiently isolated. Peptides were eluted and sequenced by mass spectrometry. Peptide–MHC binding was validated with a T2 stabilization assay and peptide immunodominance was determined using an interferon-γ (IFN-γ) ELISpot assay following stimulation of healthy HLA-A2+ peripheral blood mononuclear cells (PBMC) with peptide pools. Following peptide stimulation, CD8+ T cells with peptide-specific T cell receptors (TCR) were enriched by peptide–MHC-I dextramer labeling and fluorescence activated cell sorting for single cell TCR α/β chain sequencing.ResultsWe identified 11 A2+ peptides (8 previously unpublished) from prostatic acid phosphatase (ACPP), solute carrier family 45 member 3 (SLC45A3), and NK3 homeobox 1 (NKX3.1) that bound to HLA-A2 with varying affinities. Extended culture stimulation of PBMC with peptide pools from each PREA, compared to the standard overnight culture, revealed a greater number of IFN-γ producing cells overall and a greater breadth of response across all the peptides. Antigen specific CD8+ T cells were detectable at low frequencies in both male and female healthy PBMC for 7 of the 11 peptides. Dextramer-sorted antigen-specific cells were used for single-cell paired TCR αβ sequencing and transgenic T cell development.ConclusionsThrough this work we identified HLA-A2-presented antigenic peptides from the PREAs ACPP, SLC45A3, and NKX3.1 that can induce the expansion of IFN-γ producing CD8+ T cells. Through peptide–MHC-I dextramer labeling, we isolated PREA-specific CD8+ T cells and characterized TCR αβ sequences with potential anti-tumor functionality. Our results highlight a rapid and directed platform for the development of MHC-I-restricted transgenic CD8+ T cells targeting lineage-specific proteins expressed in prostate epithelia for adoptive therapy of advanced PCa.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A8.1-A8
Author(s):  
J Wienke ◽  
WM Kholosy ◽  
LL Visser ◽  
KM Keller ◽  
P Lijnzaad ◽  
...  

BackgroundImmunotherapy with CAR-T cells, as well as immune checkpoint blockade, show limited clinical efficacy in the pediatric solid cancer neuroblastoma, despite the success in various adult cancers. The lacking efficacy may be due to various immune evasion strategies employed by neuroblastoma tumors, leading to altered functionality of tumor-infiltrating immune cells. We aimed to provide a comprehensive overview of the composition and function of the neuroblastoma immune environment, as well as relevant immunoregulatory interactions (=), to identify novel targets for immunotherapy.Materials and Methods25 tumor samples from 20 patients (17 with high-risk disease, 6 with MYCN amplification), were collected during diagnostic biopsy pre-treatment (n=10) or during resection surgery after induction chemotherapy (n=15). Samples were enzymatically digested, single-cell FACS sorted and sequenced by Cel-Seq2 protocol.ResultsLymphoid cells in the TME consisted of αβ-, γδ-T cells, NK cells and B cells. Among αβ-T cells we identified CD8+ T cells, two functionally distinct clusters of CD4+ T cells, naive-like T cells and FOXP3+ regulatory T cells (Tregs). CD8+ T cells had reduced cytotoxic capacity compared to blood-derived T cells from a reference group. Tregs expressed high levels of PRDM1, LAYN and ICOS, suggesting an effector Treg profile, which is associated with increased inhibitory capacity. Although NK cells expressed the cytotoxic genes NKG7, KLRF1, GNLY, GZMB and PRF1, their expression was significantly lower than in blood-derived reference NK cells. Gene set enrichment analysis (GSEA) confirmed a reduced cytotoxic capacity of tumoral NK cells, which correlated with a decreased expression of activating receptors (r=0.41, p<0.001) and increased TGFβ signaling (r=-0.45, p<0.001). In addition, NK cells highly expressed the heterodimeric receptor KLRC1:KLRD1, which can inhibit NK cell function through HLA-E binding. High HLA-E expression by endothelial, immune and mesenchymal cells confirmed its inhibitory activity in the TME. Within the myeloid compartment we identified various immunosuppressive populations, comprising a cluster of IL10 and VEGFA expressing macrophages, three clusters of M2 differentiated macrophages expressing MMP9 and LGALS3, and dendritic cells with intact antigen presenting capacity, but high expression of numerous genes encoding immunosuppressive molecules such as IDO1, LGALS1, LGALS2, CCL22 and NECTIN2. In MYCN amplified tumors, specifically, we observed even lower cytotoxic capacity of CD8+ T and NK cells. We identified increased TGFB1 expression and defective antigen presentation by myeloid and tumor cells as potential causes for reduced cytotoxicity in MYCN amplified tumors. To identify relevant targets for immunotherapy we constructed an unbiased interaction network, which revealed NECTIN1=CD96 and MIF=CD74 as active immunoregulatory interactions between tumor and T/NK cells, and CD80/CD86=CTLA4, CLEC2D=KLRB1, HLA-E=KLRC1/KLRC2, CD99=PILRA, LGALS9=HAVCR2, and NECTIN2=TIGIT between myeloid and T/NK cells.ConclusionsCytotoxic lymphocytes in the neuroblastoma TME show reduced cytotoxic capacity, likely due to highly immunosuppressive myeloid cells, Tregs and numerous immunoregulatory interactions, which may serve as novel targets for immunotherapy in neuroblastoma.Disclosure InformationJ. Wienke: None. W.M. Kholosy: None. L.L. Visser: None. K.M. Keller: None. P. Lijnzaad: None. T. Margaritis: None. K.P.S. Langenberg: None. R.R. De Krijger: None. F.C.P. Holstege: None. J.J. Molenaar: None.


Author(s):  
Cyrille L. Delley ◽  
Adam R. Abate

AbstractBarcode beads allow efficient nucleic acid tagging in single cell genomics. Current barcode designs, however, are fabricated with a particular application in mind. Repurposing to novel targets, or altering to add additional targets as information is obtained is possible but the result is suboptimal. Here, we describe a modular framework that simplifies generation of multifunctional beads and allows their easy extension to new targets.One Sentence SummaryWe describe an optimized design for barcoding beads which are useful for single cell RNA and DNA sequencing.


2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Ziwen Li ◽  
Emmanouil G Solomonidis ◽  
Rodger Duffin ◽  
Ross Dobie ◽  
Marlene S Mahalhaes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document