scholarly journals RABP: Delay/disruption tolerant network routing and buffer management algorithm based on weight

2018 ◽  
Vol 14 (3) ◽  
pp. 155014771875787 ◽  
Author(s):  
Hezhe Wang ◽  
Guangsheng Feng ◽  
Huiqiang Wang ◽  
Hongwu Lv ◽  
Renjie Zhou

Delay/disruption tolerant network is a novel network architecture, which is mainly used to provide interoperability for many challenging networks such as wireless sensor network, ad hoc networks, and satellite networks. Delay/disruption tolerant network has extremely limited network resources, and there is typically no complete path between the source and destination. To increase the message delivery reliability, several multiple copy routing algorithms have been used. However, only a few can be applied efficiently when there is a resource constraint. In this article, a delay/disruption tolerant network routing and buffer management algorithm based on weight (RABP) is proposed. This algorithm estimates the message delay and hop count to the destination node in order to construct a weight function of the delay and hop count. A node with the least weight value will be selected as the relay node, and the algorithm implements buffer management based on the weight of the message carried by the node, for efficiently utilizing the limited network resources. Simulation results show that the RABP algorithm outperforms the Epidemic, Prophet, and Spray and wait routing algorithms in terms of the message delivery ratio, average delay, network overhead, and average hop count.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gang Xu ◽  
Xinyue Wang ◽  
Na Zhang ◽  
Zhifei Wang ◽  
Lin Yu ◽  
...  

Opportunistic networks are becoming more and more important in the Internet of Things. The opportunistic network routing algorithm is a very important algorithm, especially based on the historical encounters of the nodes. Such an algorithm can improve message delivery quality in scenarios where nodes meet regularly. At present, many kinds of opportunistic network routing algorithms based on historical message have been provided. According to the encounter information of the nodes in the last time slice, the routing algorithms predict probability that nodes will meet in the subsequent time slice. However, if opportunistic network is constructed in remote rural and pastoral areas with few nodes, there are few encounters in the network. Then, due to the inability to obtain sufficient encounter information, the existing routing algorithms cannot accurately predict whether there are encounters between nodes in subsequent time slices. For the purpose of improving the accuracy in the environment of sparse opportunistic networks, a prediction model based on nodes intimacy is proposed. And opportunistic network routing algorithm is designed. The experimental results show that the ONBTM model effectively improves the delivery quality of messages in sparse opportunistic networks and reduces network resources consumed during message delivery.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1942
Author(s):  
Rogaia Mhemed ◽  
Frank Comeau ◽  
William Phillips ◽  
Nauman Aslam

Much attention has been focused lately on the Opportunistic Routing technique (OR) that can overcome the restrictions of the harsh underwater environment and the unique structures of the Underwater Sensor Networks (UWSNs). OR enhances the performance of the UWSNs in both packet delivery ratio and energy saving. In our work; we propose a new routing protocol; called Energy Efficient Depth-based Opportunistic Routing with Void Avoidance for UWSNs (EEDOR-VA), to address the void area problem. EEDOR-VA is a reactive OR protocol that uses a hop count discovery procedure to update the hop count of the intermediate nodes between the source and the destination to form forwarding sets. EEDOR-VA forwarding sets can be selected with less or greater depth than the packet holder (i.e., source or intermediate node). It efficiently prevents all void/trapped nodes from being part of the forwarding sets and data transmission procedure; thereby saving network resources and delivering data packets at the lowest possible cost. The results of our extensive simulation study indicate that the EEDOR-VA protocol outperforms other protocols in terms of packet delivery ratio and energy consumption


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 6-14
Author(s):  
Shaymaa Kadhim Mohsin ◽  
Maysoon A. Mohammed ◽  
Helaa Mohammed Yassien

Bluetooth uses 2.4 GHz in ISM (industrial, scientific, and medical) band, which it shares with other wireless operating system technologies like ZigBee and WLAN. The Bluetooth core design comprises a low-energy version of a low-rate wireless personal area network and supports point-to-point or point-to-multipoint connections. The aim of the study is to develop a Bluetooth mesh flooding and to estimate packet delivery ratio in wireless sensor networks to model asynchronous transmissions including a visual representation of a mesh network, node-related statistics, and a packet delivery ratio (PDR). This work provides a platform for Bluetooth networking by analyzing the flooding of the network layers and configuring the architecture of a multi-node Bluetooth mesh. Five simulation scenarios have been presented to evaluate the network flooding performance. These scenarios have been performed over an area of 200×200 meters including 81 randomly distributed nodes including different Relay/End node configurations and source-destination linking between nodes. The results indicate that the proposed approach can create a pathway between the source node and destination node within a mesh network of randomly distributed End and Relay nodes using MATLAB environment. The results include probability calculation of getting a linking between two nodes based on Monte Carlo method, which was 88.7428 %, while the Average-hop-count linking between these nodes was 8. Based on the conducted survey, this is the first study to examine and demonstrate Bluetooth mesh flooding and estimate packet delivery ratio in wireless sensor networks


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jianfeng Guan ◽  
Qi Chu ◽  
Ilsun You

The existing spray-based routing algorithms in DTN cannot dynamically adjust the number of message copies based on actual conditions, which results in a waste of resource and a reduction of the message delivery rate. Besides, the existing spray-based routing protocols may result in blind spots or dead end problems due to the limitation of various given metrics. Therefore, this paper proposes a social relationship based adaptive multiple spray-and-wait routing algorithm (called SRAMSW) which retransmits the message copies based on their residence times in the node via buffer management and selects forwarders based on the social relationship. By these means, the proposed algorithm can remove the plight of the message congestion in the buffer and improve the probability of replicas to reach their destinations. The simulation results under different scenarios show that the SRAMSW algorithm can improve the message delivery rate and reduce the messages’ dwell time in the cache and further improve the buffer effectively.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Hezhe Wang ◽  
Hongwu Lv ◽  
Huiqiang Wang ◽  
Guangsheng Feng

When a delay/disruption tolerant network (DTN) is applied in an urban scenario, the network is mainly composed of mobile devices carried by pedestrians, cars, and other vehicles, and the node’s movement trajectory is closely related to its social relationships and regular life; thus, most existing DTN routing algorithms cannot show efficient network performance in urban scenarios. In this paper, we propose a routing algorithm, called DCRA, which divides the urban map into grids; fixed sink stations are established in specific grids such that the communication range of each fixed sink station can cover a specific number of grids; these grids are defined as a cluster and allocated a number of tokens in each cluster; the tokens in the cluster are controlled by the fixed sink station. A node will transmit messages to a relay node that has a larger remaining buffer size and encounters fixed sink stations or the destination node more frequently after it obtains a message transmit token. Simulation experiments are carried out to verify the performance of the DCAR under an urban scenario, and results show that the DCAR algorithm is superior to existing routing algorithms in terms of delivery ratio, average delay, and network overhead.


2019 ◽  
Vol 16 (9) ◽  
pp. 3906-3911
Author(s):  
Karan Singh ◽  
Rajeev Gupta

Recent progression in the field of information and communication cause increase of packet count over the World Wide Web network. These communicated packets should deliver on time from origin node to destination node using a reliable and shortest route. In this way routing plays an important part in dispatching the packets to destination form the source. This routing becomes more crucial when packets delivery is done in independent mobile nodes which dynamically form a temporary network. This network named as Mobile Ad-Hoc Network and therefore it is said to be particular reason-specific, self-ruling and dynamic. In this paper we analyzed 3 protocols and for a quality of service (i.e., Packet Delivery Ratio) and achieved comparative study of various protocols of routing with respect to Operation of protocols, Route maintenance, Routing table, Route, Route selection, Routing structure, Routing Approaches, Protocol types, Merits and Demerits.


2020 ◽  
Vol 10 (23) ◽  
pp. 8762
Author(s):  
Yixin He ◽  
Daosen Zhai ◽  
Dawei Wang ◽  
Xiao Tang ◽  
Ruonan Zhang

In this paper, we investigate the relay selection problem for the unmanned aerial vehicle (UAV)-assisted vehicular ad-hoc networks (VANETs). For the considered network, we first model and analyze the link quality of service (LQoS) from the source node (SN) to the neighbor node and the node forward capacity (NFC) from the neighbor node to the destination node (DN). Then, the relay selection problem is formulated as a multi-objective optimization problem by jointly considering the LQoS and the NFC. Afterward, we decompose the problem into two subproblems and propose a relay selection protocol with the storage-carry-forward (SCF) method. Moreover, we define a utility function with the node encounter frequency (NEF) and the message time-to-live (TTL) taken into account, based on which a redundant copy-deleting approach is devised. Furthermore, we analyze the security of the designed protocol. Finally, the simulation results demonstrate that the proposed relay selection protocol can improve the message delivery ratio, reduce the average end-to-end delay, and limit the overhead.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Halikul Lenando ◽  
Mohamad Alrfaay

In opportunistic networks, the nature of intermittent and disruptive connections degrades the efficiency of routing. Epidemic routing protocol is used as a benchmark for most of routing protocols in opportunistic mobile social networks (OMSNs) due to its high message delivery and latency. However, Epidemic incurs high cost in terms of overhead and hop count. In this paper, we propose a hybrid routing protocol called EpSoc which utilizes the Epidemic routing forwarding strategy and exploits an important social feature, that is, degree centrality. Two techniques are used in EpSoc. Messages’ TTL is adjusted based on the degree centrality of nodes, and the message blocking mechanism is used to control replication. Simulation results show that EpSoc increases the delivery ratio and decreases the overhead ratio, the average latency, and the hop counts as compared to Epidemic and Bubble Rap.


Author(s):  
Saeid Iranmanesh ◽  
Maryam Saadati

Delay Tolerant Networks (DTNs) are characterized by the lack of contemporaneous paths between any source and destination node. As a basic forwarding strategy, nodes may flood their bundles to every encountered node. This results in congestion and unnecessarily consumes precious network resources. Another strategy is to take advantage of quota based protocols in which only a limited number of copies or replicas are disseminated throughout the network in order to reduce resource usage. However, they suffer from low delivery ratios as their dissemination rate is low. In this paper, the authors propose an Adaptive Message Replication Technique (AMRT) that is fit onto quota protocols to intelligently limit the number of replicas for each generated message. In other words, a source node under AMRT considers the congestion exist amongst the neighbours in order to generate a proper number of replicas for the generated messages. The simulation studies show that when AMRT is applied onto the quota protocols namely, SprayAndWait, EBR, and DBRP, the network performance such as delivery ratio and delay is improved.


2013 ◽  
Vol 401-403 ◽  
pp. 2044-2047
Author(s):  
Hong Cheng Huang ◽  
Xi Zhang ◽  
Yi Ding Mao

This Delay/Disruption Tolerant Network(DTN) is a New Network Architecture for Communication in Restricted Condition with High Latency and Intermittent Connectivity.In Order to Solve the Problem that Messages can Not be Delivered Reliably because of Mobility and Limited Buffer Size of Nodes in DTN,a Probabilistic Routing Algorithm Based on Node Free Buffer-Utilization (NFBU)is Proposed.The Algorithm Sets Node Free Buffer Warning/excitation Threshold,through Warning/incentive Factor to Increase/decrease the Node Forwarding Probability,and Set up the Buffer Management Strategy,message Time to Live(TTL)value is Smaller,the Higher its Priority,at the same Time Remove the Oldest Message to get more Buffer Space.Simulations Indicate that the Algorithm Improves Delivery Ratio and Reduces Network Latencies in Different Node Free Buffer-Utilization State Compared with some other Routing Algorithms,and it is Highly Adaptable to Network.


Sign in / Sign up

Export Citation Format

Share Document