scholarly journals A novel method of adaptive weighted K-nearest neighbor fingerprint indoor positioning considering user’s orientation

2018 ◽  
Vol 14 (6) ◽  
pp. 155014771878588 ◽  
Author(s):  
Jingxue Bi ◽  
Yunjia Wang ◽  
Xin Li ◽  
Hongji Cao ◽  
Hongxia Qi ◽  
...  

There are many factors affecting Wi-Fi signal in indoor environment, among which the human body has an important impact. And, its characteristic is related to the user’s orientation. To eliminate positioning errors caused by user’s human body and improve positioning accuracy, this study puts forward an adaptive weighted K-nearest neighbor fingerprint positioning method considering the user’s orientation. First, the orientation fingerprint database model is proposed, which includes the position, orientation, and the sequence of mean received signal strength indicator at each reference point. Second, the fuzzy c-means algorithm is used to cluster orientation fingerprint database taking the hybrid distance of the signal domain and position domain as the clustering feature. Finally, the proposed adaptive algorithm is developed to select K-reference points by matching operation, to remove the reference points with larger signal-domain distances, minimum and maximum coordinate values, and calculate the weighted mean coordinates of the remaining reference points for positioning results. The experimental results show that the average error decreases by 0.7 m, and the root mean square error decreases to about 1.3 m by the proposed technique. And, we conclude that the proposed adaptive weighted K-nearest neighbor fingerprint positioning method can improve positioning accuracy.

2021 ◽  
Vol 10 (10) ◽  
pp. 706
Author(s):  
Hongji Cao ◽  
Yunjia Wang ◽  
Jingxue Bi ◽  
Meng Sun ◽  
Hongxia Qi ◽  
...  

Since many Wi-Fi routers can currently transmit two-band signals, we aimed to study dual-band Wi-Fi to achieve better positioning results. Thus, this paper proposes a fingerprint positioning method for dual-band Wi-Fi based on Gaussian process regression (GPR) and the K-nearest neighbor (KNN) algorithm. In the offline stage, the received signal strength (RSS) measurements of the 2.4 GHz and 5 GHz signals at the reference points (RPs) are collected and normalized to generate the online dual-band fingerprint, a special fingerprint for dual-band Wi-Fi. Then, a dual-band fingerprint database, which is a dedicated fingerprint database for dual-band Wi-Fi, is built with the dual-band fingerprint and the corresponding RP coordinates. Each dual-band fingerprint constructs its positioning model with the GPR algorithm based on itself and its neighborhood fingerprints, and its corresponding RP coordinates are the label of this model. The neighborhood fingerprints are found by the spatial distances between RPs. In the online stage, the measured RSS values of dual-band Wi-Fi are used to generate the online dual-band fingerprint and the 5 GHz fingerprint. Due to the better stability of the 5 GHz signal, an initial position is solved with the 5 GHz fingerprint and the KNN algorithm. Then, the distances between the initial position and model labels are calculated to find a positioning model with the minimum distance, which is the optimal positioning model. Finally, the dual-band fingerprint is input into this model, and the output of this model is the final estimated position. To evaluate the proposed method, we selected two scenarios (A and B) as the test area. In scenario A, the mean error (ME) and root-mean-square error (RMSE) of the proposed method were 1.067 and 1.331 m, respectively. The ME and RMSE in scenario B were 1.432 and 1.712 m, respectively. The experimental results show that the proposed method can achieve a better positioning effect compared with the KNN, Rank, Coverage-area, and GPR algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hongbin Pan ◽  
Yang Xiang ◽  
Jian Xiong ◽  
Yifan Zhao ◽  
Ziwei Huang ◽  
...  

Because of the particularity of urban underground pipe corridor environment, the distribution of wireless access points is sparse. It causes great interference to a single WiFi positioning method or geomagnetic method. In order to meet the positioning needs of daily inspection staff, this paper proposes a WiFi/geomagnetic combined positioning method. In this combination method, firstly, the collected WiFi strength data was filtered by outlier detection method. Then, the filtered data set was used to construct the offline fingerprint database. In the following positioning operation, the classical k -nearest neighbor algorithm was firstly used for preliminary positioning. Then, a standard circle was constructed based on the points obtained by the algorithm and the actual coordinate points. The diameter of the standard circle was the error, and the geomagnetic data were used for more accurate positioning in this circle. The method reduced the WiFi mismatch rate caused by multipath effects and improved positioning accuracy. Finally, a positioning accuracy experiment was performed in a single AP distribution environment that simulates a pipe corridor environment. The results proves that the WiFi/geomagnetic combined positioning method proposed in this paper is superior to the traditional WiFi and geomagnetic positioning methods in terms of positioning accuracy.


2022 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Jingxue Bi ◽  
Hongji Cao ◽  
Yunjia Wang ◽  
Guoqiang Zheng ◽  
Keqiang Liu ◽  
...  

A density-based spatial clustering of applications with noise (DBSCAN) and three distances (TD) integrated Wi-Fi positioning algorithm was proposed, aiming to enhance the positioning accuracy and stability of fingerprinting by the dynamic selection of signal-domain distance to obtain reliable nearest reference points (RPs). Two stages were included in this algorithm. One was the offline stage, where the offline fingerprint database was constructed and the other was the online positioning stage. Three distances (Euclidean distance, Manhattan distance, and cosine distance), DBSCAN, and high-resolution distance selection principle were combined to obtain more reliable nearest RPs and optimal signal-domain distance in the online stage. Fused distance, the fusion of position-domain and signal-domain distances, was applied for DBSCAN to generate the clustering results, considering both the spatial structure and signal strength of RPs. Based on the principle that the higher resolution the distance, the more clusters will be obtained, the high-resolution distance was used to compute positioning results. The weighted K-nearest neighbor (WKNN) considering signal-domain distance selection was used to estimate positions. Two scenarios were selected as test areas; a complex-layout room (Scenario A) for post-graduates and a typical large indoor environment (Scenario B) covering 3200 m2. In both Scenarios A and B, compared with support vector machine (SVM), Gaussian process regression (GPR) and rank algorithms, the improvement rates of positioning accuracy and stability of the proposed algorithm were up to 60.44 and 60.93%, respectively. Experimental results show that the proposed algorithm has a better positioning performance in complex and large indoor environments.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7269
Author(s):  
Ling Ruan ◽  
Ling Zhang ◽  
Tong Zhou ◽  
Yi Long

The weighted K-nearest neighbor algorithm (WKNN) is easily implemented, and it has been widely applied. In the large-scale positioning regions, using all fingerprint data in matching calculations would lead to high computation expenses, which is not conducive to real-time positioning. Due to signal instability, irrelevant fingerprints reduce the positioning accuracy when performing the matching calculation process. Therefore, selecting the appropriate fingerprint data from the database more quickly and accurately is an urgent problem for improving WKNN. This paper proposes an improved Bluetooth indoor positioning method using a dynamic fingerprint window (DFW-WKNN). The dynamic fingerprint window is a space range for local fingerprint data searching instead of universal searching, and it can be dynamically adjusted according to the indoor pedestrian movement and always covers the maximum possible range of the next positioning. This method was tested and evaluated in two typical scenarios, comparing two existing algorithms, the traditional WKNN and the improved WKNN based on local clustering (LC-WKNN). The experimental results show that the proposed DFW-WKNN algorithm enormously improved both the positioning accuracy and positioning efficiency, significantly, when the fingerprint data increased.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Liyang Zhang ◽  
Taihang Du ◽  
Chundong Jiang

Realizing accurate detection of an unknown radio transmitter (URT) has become a challenge problem due to its unknown parameter information. A method based on received signal strength difference (RSSD) fingerprint positioning technique and using factor graph (FG) has been successfully developed to achieve the localization of an URT. However, the RSSD-based FG model is not accurate enough to express the relationship between the RSSD and the corresponding location coordinates since the RSSD variances of reference points are different in practice. This paper proposes an enhanced RSSD-based FG algorithm using weighted least square (WLS) to effectively reduce the impact of RSSD measurement variance difference on positioning accuracy. By the use of stochastic RSSD errors between the measured value and the estimated value of the selected reference points, we utilize the error weight matrix to establish a new WLSFG model. Then, the positioning process of proposed RSSD-WLSFG algorithm is derived with the sum-product principle. In addition, the paper also explores the effects of different access point (AP) numbers and grid distances on positioning accuracy. The simulation experiment results show that the proposed algorithm can obtain the best positioning performance compared with the conventional RSSD-based K nearest neighbor (RSSD-KNN) and RSSD-FG algorithms in the case of different AP numbers and grid distances.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2502 ◽  
Author(s):  
Jingxue Bi ◽  
Yunjia Wang ◽  
Xin Li ◽  
Hongxia Qi ◽  
Hongji Cao ◽  
...  

The human body has a great influence on Wi-Fi signal power. A fixed K value leads to localization errors for the K-nearest neighbor (KNN) algorithm. To address these problems, we present an adaptive weighted KNN positioning method based on an omnidirectional fingerprint database (ODFD) and twice affinity propagation clustering. Firstly, an OFPD is proposed to alleviate body’s sheltering impact on signal, which includes position, orientation and the sequence of mean received signal strength (RSS) at each reference point (RP). Secondly, affinity propagation clustering (APC) algorithm is introduced on the offline stage based on the fusion of signal-domain distance and position-domain distance. Finally, adaptive weighted KNN algorithm based on APC is proposed for estimating user’s position during online stage. K initial RPs can be obtained by KNN, then they are clustered by APC algorithm based on their position-domain distances. The most probable sub-cluster is reserved by the comparison of RPs’ number and signal-domain distance between sub-cluster center and the online RSS readings. The weighted average coordinates in the remaining sub-cluster can be estimated. We have implemented the proposed method with the mean error of 2.2 m, the root mean square error of 1.5 m. Experimental results show that our proposed method outperforms traditional fingerprinting methods.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2300 ◽  
Author(s):  
Boyuan Wang ◽  
Xuelin Liu ◽  
Baoguo Yu ◽  
Ruicai Jia ◽  
Xingli Gan

WiFi fingerprint positioning has been widely used in the indoor positioning field. The weighed K-nearest neighbor (WKNN) algorithm is one of the most widely used deterministic algorithms. The traditional WKNN algorithm uses Euclidean distance or Manhattan distance between the received signal strengths (RSS) as the distance measure to judge the physical distance between points. However, the relationship between the RSS and the physical distance is nonlinear, using the traditional Euclidean distance or Manhattan distance to measure the physical distance will lead to errors in positioning. In addition, the traditional RSS-based clustering algorithm only takes the signal distance between the RSS as the clustering criterion without considering the position distribution of reference points (RPs). Therefore, to improve the positioning accuracy, we propose an improved WiFi positioning method based on fingerprint clustering and signal weighted Euclidean distance (SWED). The proposed algorithm is tested by experiments conducted in two experimental fields. The results indicate that compared with the traditional methods, the proposed position label-assisted (PL-assisted) clustering result can reflect the position distribution of RPs and the proposed SWED-based WKNN (SWED-WKNN) algorithm can significantly improve the positioning accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4859 ◽  
Author(s):  
Mingfeng Li ◽  
Lichen Zhao ◽  
Ding Tan ◽  
Xiaozhe Tong

Aiming at the problem of indoor environment, signal non-line-of-sight propagation and other factors affect the accuracy of indoor locating, an algorithm of indoor fingerprint localization based on the eight-neighborhood template is proposed. Based on the analysis of the signal strength of adjacent reference points in the fingerprint database, the methods for the eight-neighborhood template matching and generation were studied. In this study, the indoor environment was divided into four quadrants for each access point and the expected values of the received signal strength indication (RSSI) difference between the center points and their eight-neighborhoods in different quadrants were chosen as the generation parameters. Then different templates were generated for different access points, and the unknown point was located by the Euclidean distance for the correlation of RSSI between each template and its coverage area in the fingerprint database. With the spatial correlation of fingerprint data taken into account, the influence of abnormal fingerprint on locating accuracy is reduced. The experimental results show that the locating error is 1.0 m, which is about 0.2 m less than both K-nearest neighbor (KNN) and weighted K-nearest neighbor (WKNN) algorithms.


Author(s):  
Yu Shao ◽  
Xinyue Wang ◽  
Wenjie Song ◽  
Sobia Ilyas ◽  
Haibo Guo ◽  
...  

With the increasing aging population in modern society, falls as well as fall-induced injuries in elderly people become one of the major public health problems. This study proposes a classification framework that uses floor vibrations to detect fall events as well as distinguish different fall postures. A scaled 3D-printed model with twelve fully adjustable joints that can simulate human body movement was built to generate human fall data. The mass proportion of a human body takes was carefully studied and was reflected in the model. Object drops, human falling tests were carried out and the vibration signature generated in the floor was recorded for analyses. Machine learning algorithms including K-means algorithm and K nearest neighbor algorithm were introduced in the classification process. Three classifiers (human walking versus human fall, human fall versus object drop, human falls from different postures) were developed in this study. Results showed that the three proposed classifiers can achieve the accuracy of 100, 85, and 91%. This paper developed a framework of using floor vibration to build the pattern recognition system in detecting human falls based on a machine learning approach.


Sign in / Sign up

Export Citation Format

Share Document