scholarly journals BLE Fingerprint Indoor Localization Algorithm Based on Eight-Neighborhood Template Matching

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4859 ◽  
Author(s):  
Mingfeng Li ◽  
Lichen Zhao ◽  
Ding Tan ◽  
Xiaozhe Tong

Aiming at the problem of indoor environment, signal non-line-of-sight propagation and other factors affect the accuracy of indoor locating, an algorithm of indoor fingerprint localization based on the eight-neighborhood template is proposed. Based on the analysis of the signal strength of adjacent reference points in the fingerprint database, the methods for the eight-neighborhood template matching and generation were studied. In this study, the indoor environment was divided into four quadrants for each access point and the expected values of the received signal strength indication (RSSI) difference between the center points and their eight-neighborhoods in different quadrants were chosen as the generation parameters. Then different templates were generated for different access points, and the unknown point was located by the Euclidean distance for the correlation of RSSI between each template and its coverage area in the fingerprint database. With the spatial correlation of fingerprint data taken into account, the influence of abnormal fingerprint on locating accuracy is reduced. The experimental results show that the locating error is 1.0 m, which is about 0.2 m less than both K-nearest neighbor (KNN) and weighted K-nearest neighbor (WKNN) algorithms.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1067 ◽  
Author(s):  
Chenbin Zhang ◽  
Ningning Qin ◽  
Yanbo Xue ◽  
Le Yang

Commercial interests in indoor localization have been increasing in the past decade. The success of many applications relies at least partially on indoor localization that is expected to provide reliable indoor position information. Wi-Fi received signal strength (RSS)-based indoor localization techniques have attracted extensive attentions because Wi-Fi access points (APs) are widely deployed and we can obtain the Wi-Fi RSS measurements without extra hardware cost. In this paper, we propose a hierarchical classification-based method as a new solution to the indoor localization problem. Within the developed approach, we first adopt an improved K-Means clustering algorithm to divide the area of interest into several zones and they are allowed to overlap with one another to improve the generalization capability of the following indoor positioning process. To find the localization result, the K-Nearest Neighbor (KNN) algorithm and support vector machine (SVM) with the one-versus-one strategy are employed. The proposed method is implemented on a tablet, and its performance is evaluated in real-world environments. Experiment results reveal that the proposed method offers an improvement of 1.4% to 3.2% in terms of position classification accuracy and a reduction of 10% to 22% in terms of average positioning error compared with several benchmark methods.


2018 ◽  
Vol 14 (6) ◽  
pp. 155014771878588 ◽  
Author(s):  
Jingxue Bi ◽  
Yunjia Wang ◽  
Xin Li ◽  
Hongji Cao ◽  
Hongxia Qi ◽  
...  

There are many factors affecting Wi-Fi signal in indoor environment, among which the human body has an important impact. And, its characteristic is related to the user’s orientation. To eliminate positioning errors caused by user’s human body and improve positioning accuracy, this study puts forward an adaptive weighted K-nearest neighbor fingerprint positioning method considering the user’s orientation. First, the orientation fingerprint database model is proposed, which includes the position, orientation, and the sequence of mean received signal strength indicator at each reference point. Second, the fuzzy c-means algorithm is used to cluster orientation fingerprint database taking the hybrid distance of the signal domain and position domain as the clustering feature. Finally, the proposed adaptive algorithm is developed to select K-reference points by matching operation, to remove the reference points with larger signal-domain distances, minimum and maximum coordinate values, and calculate the weighted mean coordinates of the remaining reference points for positioning results. The experimental results show that the average error decreases by 0.7 m, and the root mean square error decreases to about 1.3 m by the proposed technique. And, we conclude that the proposed adaptive weighted K-nearest neighbor fingerprint positioning method can improve positioning accuracy.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 559 ◽  
Author(s):  
Junhuai Li ◽  
Xixi Gao ◽  
Zhiyong Hu ◽  
Huaijun Wang ◽  
Ting Cao ◽  
...  

With the development of wireless technology, indoor localization has gained wide attention. The fingerprint localization method is proposed in this paper, which is divided into two phases: offline training and online positioning. In offline training phase, the Improved Fuzzy C-means (IFCM) algorithm is proposed for regional division. The Between-Within Proportion (BWP) index is selected to divide fingerprint database, which can ensure the result of regional division consistent with the building plane structure. Moreover, the Agglomerative Nesting (AGNES) algorithm is applied to accomplish Access Point (AP) optimization. In the online positioning phase, sub-region selection is performed by nearest neighbor algorithm, then the Weighted K-nearest Neighbor (WKNN) algorithm based on Pearson Correlation Coefficient (PCC) is utilized to locate the target point. After the evaluation on the effect of regional division and AP optimization of location precision and time, the experiments show that the average positioning error is 2.53 m and the average computation time of the localization algorithm based on PCC reduced by 94.13%.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Su Pan ◽  
Sheng Hua ◽  
Duowei Pan ◽  
Xixia Sun

In this paper, we propose an AHP-WKNN method for indoor localization which combines the Analytic Hierarchy Process (AHP) technique and the Weighted K -nearest Neighbor (WKNN) algorithm. AHP serves to assign weights when WKNN is employed to select fingerprints for indoor positioning. The AHP technique can reasonably enlarge the influence that the received signal strength (RSS) gap between reference points has on the weights, achieving better performance in positioning. This paper also modifies the adaptive Kalman filter (AKF) noise reduction method by correcting the output based on the error between the RSS measurement and the expected output. The modified AKF can track the changes of RSS more effectively and achieve better performance of noise reduction. The simulation result shows that the proposed AHP-WKNN method and the modified AKF can improve positioning accuracy effectively.


2020 ◽  
Vol 5 (2) ◽  
pp. 40
Author(s):  
Shi Chen

With the rapid development of the huge promotion of the Internet and artificial intelligence, the demand for location-based services in indoor environments has grown rapidly. At present, for the localization of the indoor environment, researchers from all walks of life have proposed many indoor localization solutions based on different technologies. Fingerprint localization technology, as a commonly used indoor localization technology, has led to continuous research and improvement due to its low accuracy and complex calculations. An indoor localization system based on fingerprint clustering is proposed by this paper. The system includes offline phase and online phase. We collect the RSS signal in the offline phase. We preprocess it with the Gaussian model to build a fingerprint database, and then we use the K-Means++ algorithm to cluster the fingerprints and group the fingerprints with similar signal strengths into a clustering subset. In the online phase, we classify the measured received signal strength (RSS), and then use the weighted K-Nearest neighbor (WKNN) algorithm to calculate the localization error. The experimental results show that we can reduce the localization error and effectively reduce the computational cost of the localization algorithm in the online phase, and effectively improve the efficiency of real-time localization in the online phase.


2019 ◽  
Vol 11 (16) ◽  
pp. 1912 ◽  
Author(s):  
Tao Liu ◽  
Xing Zhang ◽  
Qingquan Li ◽  
Zhixiang Fang ◽  
Nadeem Tahir

One of the unavoidable bottlenecks in the public application of passive signal (e.g., received signal strength, magnetic) fingerprinting-based indoor localization technologies is the extensive human effort that is required to construct and update database for indoor positioning. In this paper, we propose an accurate visual-inertial integrated geo-tagging method that can be used to collect fingerprints and construct the radio map by exploiting the crowdsourced trajectory of smartphone users. By integrating multisource information from the smartphone sensors (e.g., camera, accelerometer, and gyroscope), this system can accurately reconstruct the geometry of trajectories. An algorithm is proposed to estimate the spatial location of trajectories in the reference coordinate system and construct the radio map and geo-tagged image database for indoor positioning. With the help of several initial reference points, this algorithm can be implemented in an unknown indoor environment without any prior knowledge of the floorplan or the initial location of crowdsourced trajectories. The experimental results show that the average calibration error of the fingerprints is 0.67 m. A weighted k-nearest neighbor method (without any optimization) and the image matching method are used to evaluate the performance of constructed multisource database. The average localization error of received signal strength (RSS) based indoor positioning and image based positioning are 3.2 m and 1.2 m, respectively, showing that the quality of the constructed indoor radio map is at the same level as those that were constructed by site surveying. Compared with the traditional site survey based positioning cost, this system can greatly reduce the human labor cost, with the least external information.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2117
Author(s):  
Xuesheng Peng ◽  
Ruizhi Chen ◽  
Kegen Yu ◽  
Feng Ye ◽  
Weixing Xue

The weighted K-nearest neighbor (WKNN) algorithm is the most commonly used algorithm for indoor localization. Traditional WKNN algorithms adopt received signal strength (RSS) spatial distance (usually Euclidean distance and Manhattan distance) to select reference points (RPs) for position determination. It may lead to inaccurate position estimation because the relationship of received signal strength and distance is exponential. To improve the position accuracy, this paper proposes an improved weighted K-nearest neighbor algorithm. The spatial distance and physical distance of RSS are used for RP selection, and a fusion weighted algorithm based on these two distances is used for position calculation. The experimental results demonstrate that the proposed algorithm outperforms traditional algorithms, such as K-nearest neighbor (KNN), Euclidean distance-based WKNN (E-WKNN), and physical distance-based WKNN (P-WKNN). Compared with the KNN, E-WKNN, and P-WKNN algorithms, the positioning accuracy of the proposed method is improved by about 29.4%, 23.5%, and 20.7%, respectively. Compared with some recently improved WKNN algorithms, our proposed algorithm can also obtain a better positioning performance.


2021 ◽  
Vol 10 (10) ◽  
pp. 706
Author(s):  
Hongji Cao ◽  
Yunjia Wang ◽  
Jingxue Bi ◽  
Meng Sun ◽  
Hongxia Qi ◽  
...  

Since many Wi-Fi routers can currently transmit two-band signals, we aimed to study dual-band Wi-Fi to achieve better positioning results. Thus, this paper proposes a fingerprint positioning method for dual-band Wi-Fi based on Gaussian process regression (GPR) and the K-nearest neighbor (KNN) algorithm. In the offline stage, the received signal strength (RSS) measurements of the 2.4 GHz and 5 GHz signals at the reference points (RPs) are collected and normalized to generate the online dual-band fingerprint, a special fingerprint for dual-band Wi-Fi. Then, a dual-band fingerprint database, which is a dedicated fingerprint database for dual-band Wi-Fi, is built with the dual-band fingerprint and the corresponding RP coordinates. Each dual-band fingerprint constructs its positioning model with the GPR algorithm based on itself and its neighborhood fingerprints, and its corresponding RP coordinates are the label of this model. The neighborhood fingerprints are found by the spatial distances between RPs. In the online stage, the measured RSS values of dual-band Wi-Fi are used to generate the online dual-band fingerprint and the 5 GHz fingerprint. Due to the better stability of the 5 GHz signal, an initial position is solved with the 5 GHz fingerprint and the KNN algorithm. Then, the distances between the initial position and model labels are calculated to find a positioning model with the minimum distance, which is the optimal positioning model. Finally, the dual-band fingerprint is input into this model, and the output of this model is the final estimated position. To evaluate the proposed method, we selected two scenarios (A and B) as the test area. In scenario A, the mean error (ME) and root-mean-square error (RMSE) of the proposed method were 1.067 and 1.331 m, respectively. The ME and RMSE in scenario B were 1.432 and 1.712 m, respectively. The experimental results show that the proposed method can achieve a better positioning effect compared with the KNN, Rank, Coverage-area, and GPR algorithms.


2019 ◽  
Vol 9 (11) ◽  
pp. 2337 ◽  
Author(s):  
Imran Ashraf ◽  
Soojung Hur ◽  
Yongwan Park

Indoor localization systems are susceptible to higher errors and do not meet the current standards of indoor localization. Moreover, the performance of such approaches is limited by device dependence. The use of Wi-Fi makes the localization process vulnerable to dynamic factors and energy hungry. A multi-sensor fusion based indoor localization approach is proposed to overcome these issues. The proposed approach predicts pedestrians’ current location with smartphone sensors data alone. The proposed approach aims at mitigating the impact of device dependency on the localization accuracy and lowering the localization error in the magnetic field based localization systems. We trained a deep learning based convolutional neural network to recognize the indoor scene which helps to lower the localization error. The recognized scene is used to identify a specific floor and narrow the search space. The database built of magnetic field patterns helps to lower the device dependence. A modified K nearest neighbor (mKNN) is presented to calculate the pedestrian’s current location. The data from pedestrian dead reckoning further refines this location and an extended Kalman filter is implemented to this end. The performance of the proposed approach is tested with experiments on Galaxy S8 and LG G6 smartphones. The experimental results demonstrate that the proposed approach can achieve an accuracy of 1.04 m at 50 percent, regardless of the smartphone used for localization. The proposed mKNN outperforms K nearest neighbor approach, and mean, variance, and maximum errors are lower than those of KNN. Moreover, the proposed approach does not use Wi-Fi for localization and is more energy efficient than those of Wi-Fi based approaches. Experiments reveal that localization without scene recognition leads to higher errors.


Sign in / Sign up

Export Citation Format

Share Document