Revision Targeted Muscle Reinnervation Improves Secondary Pain Insult in an Upper Extremity Amputee: A Case Report

Hand ◽  
2021 ◽  
pp. 155894472199246
Author(s):  
David D. Rivedal ◽  
Meng Guo ◽  
James Sanger ◽  
Aaron Morgan

Targeted muscle reinnervation (TMR) has been shown to improve phantom and neuropathic pain in both the acute and chronic amputee population. Through rerouting of major peripheral nerves into a newly denervated muscle, TMR harnesses the plasticity of the brain, helping to revert the sensory cortex back toward the preinsult state, effectively reducing pain. We highlight a unique case of an above-elbow amputee for sarcoma who was initially treated with successful transhumeral TMR. Following inadvertent nerve biopsy of a TMR coaptation site, his pain returned, and he was unable to don his prosthetic. Revision of his TMR to a more proximal level was performed, providing improved pain and function of the amputated arm. This is the first report to highlight the concept of secondary neuroplasticity and successful proximal TMR revision in the setting of multiple insults to the same extremity.

2020 ◽  
Vol 47 (2) ◽  
pp. 285-293
Author(s):  
Ava G. Chappell ◽  
Sumanas W. Jordan ◽  
Gregory A. Dumanian

2009 ◽  
Vol 2 (9) ◽  
pp. 531-537 ◽  
Author(s):  
Chris Douglass ◽  
Christopher J. McDermott

A patient may use various terms to describe sensory disturbance. Commonly used terms include numbness, pins and needles, tingling or pain. The actual area or pattern of sensory loss is more helpful in diagnosing the underlying cause, than focussing on the qualitative description of the sensory disturbance. Sensory disturbance can occur due to pathology anywhere along the sensory pathway: from the sensory cortex and deep white matter of the brain, through the spinal cord and nerve roots to the peripheral nerves ( Fig. 1 ). Assessment of paraesthesia therefore needs to be performed in an organized manner after a careful clinical history taking, which should guide the investigations in a focused direction to answer a specific question.


2021 ◽  
pp. 193864002110027
Author(s):  
Shannon I. Kuruvilla ◽  
Christine V. Schaeffer ◽  
Minton T. Cooper ◽  
Brent R. DeGeorge

Background Despite multiple surgical modalities available for the management of Morton’s neuroma, complications remain common. Targeted muscle reinnervation (TMR) has yet to be explored as an option for the prevention of recurrence of Morton’s neuroma. The purpose of the present investigation was to determine the consistency of the relevant foot neurovascular and muscle anatomy and to demonstrate the feasibility of TMR as an option for Morton’s neuroma. Methods The anatomy of 5 fresh-tissue donor cadaver feet was studied, including the course and location of the medial and lateral plantar nerves (MPNs and LPNs), motor branches to abductor hallucis (AH) and flexor digitorum brevis (FDB), as well as the course of sensory plantar digital nerves. Measurements for the locations of the muscular and sensory branches were taken relative to landmarks including the navicular tuberosity (NT), AH, FDB, and the third metatarsophalangeal joint (third MTPJ). Results The mean number of nerve branches to FDB identified was 2. These branch points occurred at an average of 8.6 cm down the MPN or LPN, 9.0 cm from the third MTPJ, 3.0 cm distal to AH distal edge, and 4.8 cm from the NT. The mean number of nerves to AH was 2.2. These branch points occurred at an average of 6.3 cm down the MPN, 11.9 cm from the third MTPJ, 0.8 cm from the AH distal edge, and 3.8 cm from the NT. Conclusions Recurrent interdigital neuroma, painful scar, and neuropathic pain are common complications of operative management for Morton’s neuroma. Targeted muscle reinnervation is a technique that has demonstrated efficacy for the prevention and treatment of neuroma, neuropathic pain, and phantom limb pain in amputees. Herein, we have described the neuromuscular anatomy for the application of TMR for the management of Morton’s neuroma. Target muscles, including the AH and FDB, have consistent innervation patterns in the foot, and consequently, TMR represents a viable option to consider for the management of recalcitrant Morton’s neuroma. Levels of Evidence: V


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


2020 ◽  
Vol 13 (12) ◽  
pp. e237257
Author(s):  
Monidipa Banerjee ◽  
Eiman Haj Ahmed ◽  
Kathryn Foster ◽  
Arundoss Gangadharan

There are several causes for sudden onset unilateral mydriasis, however impending transtentorial uncal herniation needs to be ruled out. This unique case highlights an uncommon adverse response to a common mode of treatment that leads to a diagnostic dilemma. A 3-year-old boy with a ventriculoperitoneal (VP) shunt for an obstructive hydrocephalus presented with an acute respiratory distress. He developed unilateral mydriasis with absent light reflex during treatment with nebulisers. An urgent CT scan of the brain did not show any new intracranial abnormality. A case of pharmacological anisocoria was diagnosed that resolved completely within 24 hours of discontinuation of ipratropium bromide. Although ipratropium-induced anisocoria has been reported in children, but to our knowledge none in a child with VP shunt for hydrocephalus. This emphasises the urgency in evaluating unilateral mydriasis to rule out life-threatening conditions. Clinicians should remember that ipratropium administered through ill-fitting face masks could cause this completely reversible adverse effect.


Author(s):  
Enrico Castroflorio ◽  
Joery den Hoed ◽  
Daria Svistunova ◽  
Mattéa J. Finelli ◽  
Alberto Cebrian-Serrano ◽  
...  

Abstract Members of the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) protein family are associated with multiple neurodevelopmental disorders, although their exact roles in disease remain unclear. For example, nuclear receptor coactivator 7 (NCOA7) has been associated with autism, although almost nothing is known regarding the mode-of-action of this TLDc protein in the nervous system. Here we investigated the molecular function of NCOA7 in neurons and generated a novel mouse model to determine the consequences of deleting this locus in vivo. We show that NCOA7 interacts with the cytoplasmic domain of the vacuolar (V)-ATPase in the brain and demonstrate that this protein is required for normal assembly and activity of this critical proton pump. Neurons lacking Ncoa7 exhibit altered development alongside defective lysosomal formation and function; accordingly, Ncoa7 deletion animals exhibited abnormal neuronal patterning defects and a reduced expression of lysosomal markers. Furthermore, behavioural assessment revealed anxiety and social defects in mice lacking Ncoa7. In summary, we demonstrate that NCOA7 is an important V-ATPase regulatory protein in the brain, modulating lysosomal function, neuronal connectivity and behaviour; thus our study reveals a molecular mechanism controlling endolysosomal homeostasis that is essential for neurodevelopment. Graphic abstract


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


Sign in / Sign up

Export Citation Format

Share Document