scholarly journals Acceleration analysis and optimal design of a 3-degree-of-freedom co-axis parallel manipulator for pick-and-place applications

2018 ◽  
Vol 10 (4) ◽  
pp. 168781401876816 ◽  
Author(s):  
Bin Liao ◽  
Yunjiang Lou ◽  
Zhibin Li
2014 ◽  
Vol 6 ◽  
pp. 157096 ◽  
Author(s):  
Zhu-Feng Shao ◽  
Xiaoqiang Tang ◽  
Wangmin Yi

With outstanding advantages, such as large workspace, flexibility, and lightweight and low inertia, cable-driven parallel manipulator shows great potential for application as the exoskeleton rehabilitation robot. However, the optimal design is still a challenging problem to be solved. In this paper, the optimal design of a 3-DOF (3-degree-of-freedom) cable-driven upper arm exoskeleton is accomplished considering the force exerted on the arm. After analysis of the working conditions, two promising configurations of the cable-driven upper arm exoskeleton are put forward and design parameters are simplified. Then, candidate ranges of two angle parameters are determined with the proposed main workspace requirement. Further, global force indices are defined to evaluate the force applied to the arm by the exoskeleton, in order to enhance the system safety and comfort. Finally, the optimal design of each configuration is obtained with proposed force indices. In addition, atlases and charts given in this paper well illustrate trends of workspace and force with different values of design parameters.


2021 ◽  
Author(s):  
◽  
Ben Haughey

<p>Development in pick-and-place robotic manipulators continues to grow as factory processes are streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops several tools to assist in the design process. The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM are explored and used to examine the reachable workspace of the manipulator. This method of analysis also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the workspace. A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in terms of its cycle-time. The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator above the workspace. The solution space of all feasible combinations of these dimensions is produced revealing cycle-times with a large degree of variation over the same path. Several optimisation algorithms are applied to finding the manipulator configuration with the fastest cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown to outperform the other techniques.</p>


Author(s):  
José María Rico Martínez ◽  
Joseph Duffy

Abstract A very simple novel expression for the accelerations of the six prismatic actuators, of the HPS connector chains, of a 6 degree of freedom in-parallel manipulator is derived. The expression is obtained by firstly computing the “accelerator” for a single HPS connector chain in terms of the joint velocities and accelerations. The accelerator is a function of the line coordinates of the joint axes and of a sequence of Lie products of the same line coordinates. A simple expression for the acceleration of the prismatic actuator is obtained by forming the Klein form, or reciprocal product, with the accelerator and the coordinates of the line of the connector chain. Since the Klein form is invariant, the resulting expression can be applied directly to the six HPS connector chains of an in-parallel manipulator. The authors believe that this simple method has important applications in the dynamics and control of these in-parallel manipulators where the computing time must be minimized to improve the behavior of parallel manipulators.


2021 ◽  
Author(s):  
◽  
Ben Haughey

<p>Development in pick-and-place robotic manipulators continues to grow as factory processes are streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops several tools to assist in the design process. The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM are explored and used to examine the reachable workspace of the manipulator. This method of analysis also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the workspace. A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in terms of its cycle-time. The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator above the workspace. The solution space of all feasible combinations of these dimensions is produced revealing cycle-times with a large degree of variation over the same path. Several optimisation algorithms are applied to finding the manipulator configuration with the fastest cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown to outperform the other techniques.</p>


2016 ◽  
Vol 45 (2) ◽  
pp. 89-95
Author(s):  
Soheil Zarkandi

This paper deals with the second order kinematics of three degree-of-freedom (DOF) planar parallel manipulators. The simple and compact expressions are derived for both the inverse and forward acceleration analyses using screw theory. Moreover, as an example, a 3-DOF planar parallel manipulator is introduced and its kinematics is analyzed using the proposed method.


Robotica ◽  
2002 ◽  
Vol 20 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Erika Ottaviano ◽  
Marco Ceccarelli

CaPaMan (Cassino Parallel Manipulator) is a 3-Degree Of Freedom spatial parallel manipulator that has been designed at the Laboratory of Robotics and Mechatronics, in Cassino. In this paper we present a formulation for an optimum design for CaPaMan architecture when the orientation workspace is suitably specified.


Sign in / Sign up

Export Citation Format

Share Document